/** @cdk.inchi InChI=1/C4H5N/c1-2-4-5-3-1/h1-5H */ @Test public void xtestPyrrole() throws Exception { IAtomContainer enol = new AtomContainer(); // atom block IAtom atom1 = new Atom(Elements.CARBON); atom1.setHybridization(Hybridization.SP2); IAtom atom2 = new Atom(Elements.CARBON); atom2.setHybridization(Hybridization.SP2); IAtom atom3 = new Atom(Elements.CARBON); atom3.setHybridization(Hybridization.SP2); IAtom atom4 = new Atom(Elements.CARBON); atom4.setHybridization(Hybridization.SP2); IAtom atom5 = new Atom(Elements.NITROGEN); atom5.setHybridization(Hybridization.SP2); atom5.setImplicitHydrogenCount(1); // bond block IBond bond1 = new Bond(atom1, atom2); IBond bond2 = new Bond(atom2, atom3); IBond bond3 = new Bond(atom3, atom4); IBond bond4 = new Bond(atom4, atom5); IBond bond5 = new Bond(atom5, atom1); enol.addAtom(atom1); enol.addAtom(atom2); enol.addAtom(atom3); enol.addAtom(atom4); enol.addAtom(atom5); enol.addBond(bond1); enol.addBond(bond2); enol.addBond(bond3); enol.addBond(bond4); enol.addBond(bond5); // perceive atom types AtomContainerManipulator.percieveAtomTypesAndConfigureAtoms(enol); // now have the algorithm have a go at it enol = fbot.kekuliseAromaticRings(enol); Assert.assertNotNull(enol); // Assert.assertTrue(fbot.isOK(enol)); // now check whether it did the right thing Assert.assertEquals(CDKConstants.BONDORDER_DOUBLE, enol.getBond(0).getOrder()); ; Assert.assertEquals(CDKConstants.BONDORDER_SINGLE, enol.getBond(1).getOrder()); ; Assert.assertEquals(CDKConstants.BONDORDER_DOUBLE, enol.getBond(2).getOrder()); ; Assert.assertEquals(CDKConstants.BONDORDER_SINGLE, enol.getBond(3).getOrder()); ; Assert.assertEquals(CDKConstants.BONDORDER_SINGLE, enol.getBond(4).getOrder()); ; }
/** * This method calculates the ionization potential of an atom. * * @param atom The IAtom to ionize. * @param container Parameter is the IAtomContainer. * @return The ionization potential. Not possible the ionization. */ @Override public DescriptorValue calculate(IAtom atom, IAtomContainer container) { double value = 0; // FIXME: for now I'll cache a few modified atomic properties, and restore them at the end of // this method String originalAtomtypeName = atom.getAtomTypeName(); Integer originalNeighborCount = atom.getFormalNeighbourCount(); Integer originalValency = atom.getValency(); IAtomType.Hybridization originalHybrid = atom.getHybridization(); Double originalBondOrderSum = atom.getBondOrderSum(); Order originalMaxBondOrder = atom.getMaxBondOrder(); if (!isCachedAtomContainer(container)) { try { AtomContainerManipulator.percieveAtomTypesAndConfigureAtoms(container); LonePairElectronChecker lpcheck = new LonePairElectronChecker(); lpcheck.saturate(container); } catch (CDKException e) { return new DescriptorValue( getSpecification(), getParameterNames(), getParameters(), new DoubleResult(Double.NaN), getDescriptorNames(), e); } } try { value = IonizationPotentialTool.predictIP(container, atom); } catch (CDKException e) { return new DescriptorValue( getSpecification(), getParameterNames(), getParameters(), new DoubleResult(Double.NaN), getDescriptorNames(), e); } // restore original props atom.setAtomTypeName(originalAtomtypeName); atom.setFormalNeighbourCount(originalNeighborCount); atom.setValency(originalValency); atom.setHybridization(originalHybrid); atom.setMaxBondOrder(originalMaxBondOrder); atom.setBondOrderSum(originalBondOrderSum); return new DescriptorValue( getSpecification(), getParameterNames(), getParameters(), new DoubleResult(value), getDescriptorNames()); }
/** * Initiates the process for the given mechanism. The atoms to apply are mapped between reactants * and products. * * @param atomContainerSet * @param atomList The list of atoms taking part in the mechanism. Only allowed two atoms. The * first atom is the atom which contains the ISingleElectron and the second third is the atom * which will be removed the first atom * @param bondList The list of bonds taking part in the mechanism. Only allowed one bond. It is * the bond which is moved * @return The Reaction mechanism */ @TestMethod(value = "testInitiate_IAtomContainerSet_ArrayList_ArrayList") public IReaction initiate( IAtomContainerSet atomContainerSet, ArrayList<IAtom> atomList, ArrayList<IBond> bondList) throws CDKException { CDKAtomTypeMatcher atMatcher = CDKAtomTypeMatcher.getInstance(atomContainerSet.getBuilder()); if (atomContainerSet.getAtomContainerCount() != 1) { throw new CDKException("RadicalSiteIonizationMechanism only expects one IMolecule"); } if (atomList.size() != 3) { throw new CDKException("RadicalSiteIonizationMechanism expects three atoms in the ArrayList"); } if (bondList.size() != 2) { throw new CDKException( "RadicalSiteIonizationMechanism only expect one bond in the ArrayList"); } IAtomContainer molecule = atomContainerSet.getAtomContainer(0); IAtomContainer reactantCloned; try { reactantCloned = (IAtomContainer) molecule.clone(); } catch (CloneNotSupportedException e) { throw new CDKException("Could not clone IMolecule!", e); } IAtom atom1 = atomList.get(0); // Atom containing the ISingleElectron IAtom atom1C = reactantCloned.getAtom(molecule.getAtomNumber(atom1)); IAtom atom2 = atomList.get(1); // Atom IAtom atom2C = reactantCloned.getAtom(molecule.getAtomNumber(atom2)); IAtom atom3 = atomList.get(2); // Atom to be saved IAtom atom3C = reactantCloned.getAtom(molecule.getAtomNumber(atom3)); IBond bond1 = bondList.get(0); // Bond to increase the order int posBond1 = molecule.getBondNumber(bond1); IBond bond2 = bondList.get(1); // Bond to remove int posBond2 = molecule.getBondNumber(bond2); BondManipulator.increaseBondOrder(reactantCloned.getBond(posBond1)); reactantCloned.removeBond(reactantCloned.getBond(posBond2)); List<ISingleElectron> selectron = reactantCloned.getConnectedSingleElectronsList(atom1C); reactantCloned.removeSingleElectron(selectron.get(selectron.size() - 1)); atom1C.setHybridization(null); AtomContainerManipulator.percieveAtomTypesAndConfigureAtoms(reactantCloned); IAtomType type = atMatcher.findMatchingAtomType(reactantCloned, atom1C); if (type == null) return null; atom2C.setHybridization(null); AtomContainerManipulator.percieveAtomTypesAndConfigureAtoms(reactantCloned); type = atMatcher.findMatchingAtomType(reactantCloned, atom2C); if (type == null) return null; reactantCloned.addSingleElectron(new SingleElectron(atom3C)); atom3C.setHybridization(null); AtomContainerManipulator.percieveAtomTypesAndConfigureAtoms(reactantCloned); type = atMatcher.findMatchingAtomType(reactantCloned, atom3C); if (type == null) return null; IReaction reaction = DefaultChemObjectBuilder.getInstance().newInstance(IReaction.class); reaction.addReactant(molecule); /* mapping */ for (IAtom atom : molecule.atoms()) { IMapping mapping = DefaultChemObjectBuilder.getInstance() .newInstance( IMapping.class, atom, reactantCloned.getAtom(molecule.getAtomNumber(atom))); reaction.addMapping(mapping); } IAtomContainerSet moleculeSetP = ConnectivityChecker.partitionIntoMolecules(reactantCloned); for (int z = 0; z < moleculeSetP.getAtomContainerCount(); z++) reaction.addProduct((IAtomContainer) moleculeSetP.getAtomContainer(z)); return reaction; }