public void unbox(Map<Variable, TemporaryLocalVariable> unboxMap) {
    // System.out.println("BB : " + basicBlock + " in " + problem.getScope().getName());
    // System.out.println("-- known types on entry:");
    // for (Variable v: inState.types.keySet()) {
    //     if (inState.types.get(v) != Object.class) {
    //         System.out.println(v + "-->" + inState.types.get(v));
    //     }
    // }
    // System.out.print("-- unboxed vars on entry:");
    // for (Variable v: inState.unboxedVars) {
    //     System.out.print(" " + v);
    // }
    // System.out.println("------");
    // System.out.print("-- unboxed vars on exit:");
    // for (Variable v: outState.unboxedVars) {
    //     System.out.print(" " + v);
    // }
    // System.out.println("------");

    CFG cfg = getCFG();

    // Compute UNION(unboxedVarsIn(all-successors)) - this.unboxedVarsOut
    // All vars in this new set have to be unboxed on exit from this BB
    HashMap<Variable, Class> succUnboxedVars = new HashMap<Variable, Class>();
    for (BasicBlock b : cfg.getOutgoingDestinations(basicBlock)) {
      if (b.isExitBB()) continue;

      Map<Variable, Class> xVars = problem.getFlowGraphNode(b).inState.unboxedVars;
      for (Variable v2 : xVars.keySet()) {
        // VERY IMPORTANT: Pay attention!
        //
        // Technically, the successors of this node may not all agree on what
        // the unboxed type ought to be for 'v2'. For example, one successor might
        // want 'v2' in Fixnum form and other might want it in Float form. If that
        // happens, we have to add unboxing instructions for each of those expected
        // types. However, for now, we are going to punt and assume that our successors
        // agree on unboxed types for 'v2'.
        succUnboxedVars.put(v2, xVars.get(v2));
      }
    }

    // Same caveat as above applies here
    for (Variable v3 : outState.unboxedVars.keySet()) {
      succUnboxedVars.remove(v3);
    }

    // Only worry about vars live on exit from the BB
    LiveVariablesProblem lvp =
        (LiveVariablesProblem) problem.getScope().getDataFlowSolution(DataFlowConstants.LVP_NAME);
    BitSet liveVarsSet = lvp.getFlowGraphNode(basicBlock).getLiveInBitSet();

    List<Instr> newInstrs = new ArrayList<Instr>();
    boolean unboxedLiveVars = false;

    initSolution();

    for (Instr i : basicBlock.getInstrs()) {
      Variable dst = null;
      boolean dirtied = false;
      boolean hitDFBarrier = false;
      // System.out.println("ORIG: " + i);
      if (i.getOperation().transfersControl()) {
        // Add unboxing instrs.
        for (Variable v : succUnboxedVars.keySet()) {
          if (liveVarsSet.get(lvp.getDFVar(v))) {
            unboxVar(tmpState, succUnboxedVars.get(v), unboxMap, v, newInstrs);
          }
        }
        unboxedLiveVars = true;
      } else {
        if (i instanceof ResultInstr) {
          dst = ((ResultInstr) i).getResult();
        }

        if (i instanceof CopyInstr) {
          // Copies are easy
          Operand src = ((CopyInstr) i).getSource();
          Class srcType = getOperandType(tmpState, src);
          setOperandType(tmpState, dst, srcType);

          // If we have an unboxed type for 'src', we can leave this unboxed.
          //
          // FIXME: However, if 'src' is a constant, this could unnecessarily
          // leave 'src' unboxed and lead to a boxing instruction further down
          // at the use site of 'dst'. This indicates that leaving this unboxed
          // should ideally be done 'on-demand'. This indicates that this could
          // be a backward-flow algo OR that this algo should be run on a
          // dataflow graph / SSA graph.
          if (srcType == Float.class || srcType == Fixnum.class) {
            Operand unboxedSrc =
                src instanceof Variable ? getUnboxedVar(srcType, unboxMap, (Variable) src) : src;
            TemporaryLocalVariable unboxedDst = getUnboxedVar(srcType, unboxMap, dst);
            newInstrs.add(new CopyInstr(Operation.COPY, unboxedDst, unboxedSrc));
            tmpState.unboxedVars.put(dst, srcType);
            dirtied = true;
          }
        } else if (i instanceof ClosureAcceptingInstr) {
          Operand o = ((ClosureAcceptingInstr) i).getClosureArg();
          if (i instanceof CallBase && o == null) {
            CallBase c = (CallBase) i;
            MethAddr m = c.getMethodAddr();
            Operand r = c.getReceiver();
            Operand[] args = c.getCallArgs();
            if (dst != null && args.length == 1 && m.resemblesALUOp()) {
              Operand a = args[0];
              Class receiverType = getOperandType(tmpState, r);
              Class argType = getOperandType(tmpState, a);
              // Optimistically assume that call is an ALU op
              Operation unboxedOp;
              if ((receiverType == Float.class
                      || (receiverType == Fixnum.class && argType == Float.class))
                  && (unboxedOp = m.getUnboxedOp(Float.class)) != null) {
                dirtied = true;

                Class dstType = m.getUnboxedResultType(Float.class);
                setOperandType(tmpState, dst, dstType);
                tmpState.unboxedVars.put(dst, dstType);

                TemporaryLocalVariable unboxedDst = getUnboxedVar(dstType, unboxMap, dst);
                r = unboxOperand(tmpState, Float.class, unboxMap, r, newInstrs);
                a = unboxOperand(tmpState, Float.class, unboxMap, a, newInstrs);
                newInstrs.add(new AluInstr(unboxedOp, unboxedDst, r, a));
              } else if ((receiverType == Float.class
                      || (receiverType == Fixnum.class && argType == Fixnum.class))
                  && (unboxedOp = m.getUnboxedOp(Fixnum.class)) != null) {
                dirtied = true;

                Class dstType = m.getUnboxedResultType(Fixnum.class);
                setOperandType(tmpState, dst, dstType);
                tmpState.unboxedVars.put(dst, dstType);

                TemporaryLocalVariable unboxedDst = getUnboxedVar(dstType, unboxMap, dst);
                r = unboxOperand(tmpState, Fixnum.class, unboxMap, r, newInstrs);
                a = unboxOperand(tmpState, Fixnum.class, unboxMap, a, newInstrs);
                newInstrs.add(new AluInstr(unboxedOp, unboxedDst, r, a));
              } else {
                if (receiverType == Fixnum.class && argType == Fixnum.class) {
                  setOperandType(tmpState, dst, Fixnum.class);
                } else {
                  setOperandType(tmpState, dst, Object.class);
                }

                if (c.targetRequiresCallersBinding()) {
                  hitDFBarrier = true;
                }
              }
            } else {
              setOperandType(tmpState, dst, Object.class);
            }
          } else {
            if (o instanceof WrappedIRClosure) {
              // Since binding can escape in arbitrary ways in the general case,
              // assume the worst for now. If we are guaranteed that the closure binding
              // is not used outside the closure itself, we can avoid worst-case behavior.
              hitDFBarrier = true;

              // Fetch the nested unboxing-analysis problem, creating one if necessary
              IRClosure cl = ((WrappedIRClosure) o).getClosure();
              UnboxableOpsAnalysisProblem subProblem =
                  (UnboxableOpsAnalysisProblem) cl.getDataFlowSolution(DataFlowConstants.UNBOXING);
              UnboxableOpsAnalysisNode exitNode = subProblem.getExitNode();

              // Compute solution
              subProblem.unbox();

              // Update types to MEET(new-state-on-exit, current-state)
              tmpState.computeMEETForTypes(exitNode.outState, true);

              // As for unboxed var state, since binding can escape in
              // arbitrary ways in the general case, assume the worst for now.
              // If we are guaranteed that the closure binding is not used
              // outside the closure itself, we can avoid worst-case behavior
              // and only clear vars that are modified in the closure.
              hitDFBarrier = true;
            } else {
              // Cannot analyze
              hitDFBarrier = true;
            }
          }
        } else {
          // We dont know how to optimize this instruction.
          // So, we assume we dont know type of the result.
          // TOP/class --> BOTTOM
          setOperandType(tmpState, dst, Object.class);
        }
      }

      if (dirtied) {
        tmpState.unboxedDirtyVars.add(dst);
      } else {
        // Since the instruction didn't run in unboxed form,
        // dirty unboxed vars will have to get boxed here.
        boxRequiredVars(
            i, tmpState, unboxMap, dst, hasExceptionsRescued(), hitDFBarrier, newInstrs);
      }
    }

    // Add unboxing instrs.
    if (!unboxedLiveVars) {
      for (Variable v : succUnboxedVars.keySet()) {
        if (liveVarsSet.get(lvp.getDFVar(v))) {
          unboxVar(tmpState, succUnboxedVars.get(v), unboxMap, v, newInstrs);
        }
      }
    }

    /*
            System.out.println("------");
            for (Instr i : newInstrs) {
                System.out.println("NEW: " + i);
            }
    */

    basicBlock.replaceInstrs(newInstrs);
  }
  @Override
  public void applyTransferFunction(Instr i) {

    Variable dst = null;
    boolean dirtied = false;
    boolean hitDFBarrier = false;
    if (i instanceof ResultInstr) {
      dst = ((ResultInstr) i).getResult();
    }

    if (i instanceof CopyInstr) {
      // Copies are easy
      Operand src = ((CopyInstr) i).getSource();
      Class srcType = getOperandType(tmpState, src);
      setOperandType(tmpState, dst, srcType);

      // If we have an unboxed type for 'src', we can leave this unboxed.
      //
      // FIXME: However, if 'src' is a constant, this could unnecessarily
      // leave 'src' unboxed and lead to a boxing instruction further down
      // at the use site of 'dst'. This indicates that leaving this unboxed
      // should ideally be done 'on-demand'. This indicates that this could
      // be a backward-flow algo OR that this algo should be run on a
      // dataflow graph / SSA graph.
      if (srcType == Float.class) {
        dirtied = true;
        tmpState.unboxedVars.put(dst, srcType);
      } else if (srcType == Fixnum.class) {
        dirtied = true;
        tmpState.unboxedVars.put(dst, srcType);
      }
    } else if (i instanceof ClosureAcceptingInstr) {
      Operand o = ((ClosureAcceptingInstr) i).getClosureArg();
      // Process calls specially -- these are what we want to optimize!
      if (i instanceof CallBase && o == null) {
        CallBase c = (CallBase) i;
        MethAddr m = c.getMethodAddr();
        Operand r = c.getReceiver();
        Operand[] args = c.getCallArgs();
        if (dst != null && args.length == 1 && m.resemblesALUOp()) {
          Operand a = args[0];
          Class receiverType = getOperandType(tmpState, r);
          Class argType = getOperandType(tmpState, a);
          // Optimistically assume that call is an ALU op
          if (receiverType == Float.class
              || (receiverType == Fixnum.class && argType == Float.class)) {
            dirtied = true;

            Class dstType = m.getUnboxedResultType(Float.class);
            setOperandType(tmpState, dst, dstType);
            tmpState.unboxedVars.put(dst, dstType);

            // If 'r' and 'a' are not already in unboxed forms at this point,
            // they will get unboxed after this, because we want to opt. this call
            if (r instanceof Variable) {
              tmpState.unboxedVars.put((Variable) r, Float.class);
            }
            if (a instanceof Variable) {
              tmpState.unboxedVars.put((Variable) a, Float.class);
            }
          } else if (receiverType == Float.class
              || (receiverType == Fixnum.class && argType == Fixnum.class)) {
            dirtied = true;

            Class dstType = m.getUnboxedResultType(Fixnum.class);
            setOperandType(tmpState, dst, dstType);
            tmpState.unboxedVars.put(dst, dstType);

            // If 'r' and 'a' are not already in unboxed forms at this point,
            // they will get unboxed after this, because we want to opt. this call
            if (r instanceof Variable) {
              tmpState.unboxedVars.put((Variable) r, Fixnum.class);
            }
            if (a instanceof Variable) {
              tmpState.unboxedVars.put((Variable) a, Fixnum.class);
            }
          } else {
            if (receiverType == Fixnum.class && argType == Fixnum.class) {
              setOperandType(tmpState, dst, Fixnum.class);
            } else {
              setOperandType(tmpState, dst, Object.class);
            }

            if (c.targetRequiresCallersBinding()) {
              hitDFBarrier = true;
            }
          }
        } else {
          setOperandType(tmpState, dst, Object.class);
        }
      } else {
        if (o instanceof WrappedIRClosure) {
          // Fetch the nested unboxing-analysis problem, creating one if necessary
          IRClosure cl = ((WrappedIRClosure) o).getClosure();
          UnboxableOpsAnalysisProblem subProblem =
              (UnboxableOpsAnalysisProblem) cl.getDataFlowSolution(DataFlowConstants.UNBOXING);
          if (subProblem == null) {
            subProblem = new UnboxableOpsAnalysisProblem();
            subProblem.setup(cl);
            cl.setDataFlowSolution(DataFlowConstants.UNBOXING, subProblem);
          }

          UnboxableOpsAnalysisNode exitNode = subProblem.getExitNode();
          UnboxableOpsAnalysisNode entryNode = subProblem.getEntryNode();

          // Init it to MEET(state-on-entry, state-on-exit).
          // The meet is required to account for participation of the closure in a loop.
          // Ex: f = 0.0; n.times { f += 10; }
          entryNode.inState = new UnboxState();
          for (Variable v : tmpState.types.keySet()) {
            if (v instanceof LocalVariable) {
              entryNode.inState.types.put(v, tmpState.types.get(v));
            }
          }
          entryNode.inState.computeMEET(exitNode.outState);

          // Compute solution
          subProblem.compute_MOP_Solution();

          // Update types to MEET(new-state-on-exit, current-state)
          tmpState.computeMEETForTypes(exitNode.outState, true);

          // As for unboxed var state, since binding can escape in
          // arbitrary ways in the general case, assume the worst for now.
          // If we are guaranteed that the closure binding is not used
          // outside the closure itself, we can avoid worst-case behavior
          // and only clear vars that are modified in the closure.
          hitDFBarrier = true;
        } else {
          // Black hole -- cannot analyze
          hitDFBarrier = true;
        }
      }
    } else {
      // We dont know how to optimize this instruction.
      // So, we assume we dont know type of the result.
      // TOP/class --> BOTTOM
      setOperandType(tmpState, dst, Object.class);
    }

    if (dirtied) {
      tmpState.unboxedDirtyVars.add(dst);
    } else {
      // Since the instruction didn't run in unboxed form,
      // dirty unboxed vars will have to get boxed here.
      updateUnboxedVarsInfo(i, tmpState, dst, hasExceptionsRescued(), hitDFBarrier);
    }
  }