private void init(Graph<V, E> g, Set<V> vertexSet, Set<E> edgeSet) { // create a map between vertex value to its order(1st,2nd,etc) // "CAT"=1 "DOG"=2 "RHINO"=3 this.mapVertexToOrder = new HashMap<V, Integer>(vertexSet.size()); int counter = 0; for (V vertex : vertexSet) { mapVertexToOrder.put(vertex, new Integer(counter)); counter++; } // create a friendlier representation of an edge // by order, like 2nd->3rd instead of B->A // use the map to convert vertex to order // on directed graph, edge A->B must be (A,B) // on undirected graph, edge A-B can be (A,B) or (B,A) this.labelsEdgesSet = new HashSet<LabelsEdge>(edgeSet.size()); for (E edge : edgeSet) { V sourceVertex = g.getEdgeSource(edge); Integer sourceOrder = mapVertexToOrder.get(sourceVertex); int sourceLabel = sourceOrder.intValue(); int targetLabel = (mapVertexToOrder.get(g.getEdgeTarget(edge))).intValue(); LabelsEdge lablesEdge = new LabelsEdge(sourceLabel, targetLabel); this.labelsEdgesSet.add(lablesEdge); if (g instanceof UndirectedGraph<?, ?>) { LabelsEdge oppositeEdge = new LabelsEdge(targetLabel, sourceLabel); this.labelsEdgesSet.add(oppositeEdge); } } }
/** * Compute the unique decomposition of the input graph G (atoms of G). Implementation of algorithm * Atoms as described in Berry et al. (2010), DOI:10.3390/a3020197, <a * href="http://www.mdpi.com/1999-4893/3/2/197">http://www.mdpi.com/1999-4893/3/2/197</a> */ private void computeAtoms() { if (chordalGraph == null) { computeMinimalTriangulation(); } separators = new HashSet<>(); // initialize g' as subgraph of graph (same vertices and edges) UndirectedGraph<V, E> gprime = copyAsSimpleGraph(graph); // initialize h' as subgraph of chordalGraph (same vertices and edges) UndirectedGraph<V, E> hprime = copyAsSimpleGraph(chordalGraph); atoms = new HashSet<>(); Iterator<V> iterator = meo.descendingIterator(); while (iterator.hasNext()) { V v = iterator.next(); if (generators.contains(v)) { Set<V> separator = new HashSet<>(Graphs.neighborListOf(hprime, v)); if (isClique(graph, separator)) { if (separator.size() > 0) { if (separators.contains(separator)) { fullComponentCount.put(separator, fullComponentCount.get(separator) + 1); } else { fullComponentCount.put(separator, 2); separators.add(separator); } } UndirectedGraph<V, E> tmpGraph = copyAsSimpleGraph(gprime); tmpGraph.removeAllVertices(separator); ConnectivityInspector<V, E> con = new ConnectivityInspector<>(tmpGraph); if (con.isGraphConnected()) { throw new RuntimeException("separator did not separate the graph"); } for (Set<V> component : con.connectedSets()) { if (component.contains(v)) { gprime.removeAllVertices(component); component.addAll(separator); atoms.add(new HashSet<>(component)); assert (component.size() > 0); break; } } } } hprime.removeVertex(v); } if (gprime.vertexSet().size() > 0) { atoms.add(new HashSet<>(gprime.vertexSet())); } }
/** * Finds the vertex set for the subgraph of all cycles. * * @return set of all vertices which participate in at least one cycle in this graph */ public Set<V> findCycles() { // ProbeIterator can't be used to handle this case, // so use StrongConnectivityInspector instead. StrongConnectivityInspector<V, E> inspector = new StrongConnectivityInspector<V, E>(graph); List<Set<V>> components = inspector.stronglyConnectedSets(); // A vertex participates in a cycle if either of the following is // true: (a) it is in a component whose size is greater than 1 // or (b) it is a self-loop Set<V> set = new HashSet<V>(); for (Set<V> component : components) { if (component.size() > 1) { // cycle set.addAll(component); } else { V v = component.iterator().next(); if (graph.containsEdge(v, v)) { // self-loop set.add(v); } } } return set; }
/** * @param vertexNumber the number which identifies the vertex v in this order. * @return the identifying numbers of all vertices which are connected to v by an edge incoming to * v. */ public int[] getInEdges(int vertexNumber) { if (cacheEdges && (incomingEdges[vertexNumber] != null)) { return incomingEdges[vertexNumber]; } V v = getVertex(vertexNumber); Set<E> edgeSet; if (graph instanceof DirectedGraph<?, ?>) { edgeSet = ((DirectedGraph<V, E>) graph).incomingEdgesOf(v); } else { edgeSet = graph.edgesOf(v); } int[] vertexArray = new int[edgeSet.size()]; int i = 0; for (E edge : edgeSet) { V source = graph.getEdgeSource(edge), target = graph.getEdgeTarget(edge); vertexArray[i++] = mapVertexToOrder.get(source.equals(v) ? target : source); } if (cacheEdges) { incomingEdges[vertexNumber] = vertexArray; } return vertexArray; }
/** * . * * @return */ public int edgeCount() { return vertexEdges.size(); }
public int outDegreeOf(V vertex) { Set<E> res = outgoingEdgesOf(vertex); return res.size(); }
public int inDegreeOf(V vertex) { Set<E> res = incomingEdgesOf(vertex); return res.size(); }