/** * Construct with invalid System property for JGAPFactory set. * * @author Klaus Meffert * @since 2.6 */ public void testConstruct_1() { System.setProperty(Configuration.PROPERTY_JGAPFACTORY_CLASS, "org.jgap.myFactoryTest"); try { new Configuration(); fail(); } catch (RuntimeException rex) {; // this is OK } }
/** * Main method. A single command-line argument is expected, which is the amount of change to * create (in other words, 75 would be equal to 75 cents). * * @param args amount of change in cents to create * @throws Exception * @author Neil Rotstan * @author Klaus Meffert * @since 1.0 */ public static void main(String[] args) throws Exception { if (args.length < 1) { System.out.println("Syntax: ConstraintExample <amount>"); } else { int amount = 0; try { amount = Integer.parseInt(args[0]); } catch (NumberFormatException e) { System.out.println("The <amount> argument must be a valid integer value"); System.exit(1); } boolean doMonitor = false; if (args.length > 1) { String monitoring = args[1]; if (monitoring != null && monitoring.equals("MONITOR")) { doMonitor = true; } } makeChangeForAmount(amount, doMonitor); } }
/** * Executes the genetic algorithm to determine the minimum number of coins necessary to make up * the given target amount of change. The solution will then be written to System.out. * * @param a_targetChangeAmount the target amount of change for which this method is attempting to * produce the minimum number of coins * @param a_doMonitor true: turn on monitoring for later evaluation of evolution progress * @throws Exception * @author Neil Rotstan * @author Klaus Meffert * @since 1.0 */ public static void makeChangeForAmount(int a_targetChangeAmount, boolean a_doMonitor) throws Exception { // Start with a DefaultConfiguration, which comes setup with the // most common settings. // ------------------------------------------------------------- Configuration conf = new DefaultConfiguration(); // Care that the fittest individual of the current population is // always taken to the next generation. // Consider: With that, the pop. size may exceed its original // size by one sometimes! // ------------------------------------------------------------- conf.setPreservFittestIndividual(true); conf.setKeepPopulationSizeConstant(false); // Set the fitness function we want to use, which is our // MinimizingMakeChangeFitnessFunction. We construct it with // the target amount of change passed in to this method. // --------------------------------------------------------- FitnessFunction myFunc = new SampleFitnessFunction(a_targetChangeAmount); conf.setFitnessFunction(myFunc); if (a_doMonitor) { // Turn on monitoring/auditing of evolution progress. // -------------------------------------------------- m_monitor = new EvolutionMonitor(); conf.setMonitor(m_monitor); } // Now we need to tell the Configuration object how we want our // Chromosomes to be setup. We do that by actually creating a // sample Chromosome and then setting it on the Configuration // object. As mentioned earlier, we want our Chromosomes to each // have four genes, one for each of the coin types. We want the // values (alleles) of those genes to be integers, which represent // how many coins of that type we have. We therefore use the // IntegerGene class to represent each of the genes. That class // also lets us specify a lower and upper bound, which we set // to sensible values for each coin type. // -------------------------------------------------------------- Gene[] sampleGenes = new Gene[4]; sampleGenes[0] = new IntegerGene(conf, 0, 98); // Wasser sampleGenes[1] = new IntegerGene(conf, 0, 98); // Zucker sampleGenes[2] = new IntegerGene(conf, 0, 98); // Saft1 sampleGenes[3] = new IntegerGene(conf, 0, 98); // Saft2 IChromosome sampleChromosome = new Chromosome(conf, sampleGenes); conf.setSampleChromosome(sampleChromosome); // Finally, we need to tell the Configuration object how many // Chromosomes we want in our population. The more Chromosomes, // the larger number of potential solutions (which is good for // finding the answer), but the longer it will take to evolve // the population (which could be seen as bad). // ------------------------------------------------------------ conf.setPopulationSize(80); // Now we initialize the population randomly, anyway (as an example only)! // If you want to load previous results from file, remove the next line! // ----------------------------------------------------------------------- Genotype population = Genotype.randomInitialGenotype(conf); // Evolve the population. Since we don't know what the best answer // is going to be, we just evolve the max number of times. // --------------------------------------------------------------- long startTime = System.currentTimeMillis(); for (int i = 0; i < MAX_ALLOWED_EVOLUTIONS; i++) { if (!uniqueChromosomes(population.getPopulation())) { throw new RuntimeException("Invalid state in generation " + i); } if (m_monitor != null) { population.evolve(m_monitor); } else { population.evolve(); } } long endTime = System.currentTimeMillis(); System.out.println("Total evolution time: " + (endTime - startTime) + " ms"); // Save progress to file. A new run of this example will then be able to // resume where it stopped before! --> this is completely optional. // --------------------------------------------------------------------- // Display the best solution we found. // ----------------------------------- IChromosome bestSolutionSoFar = population.getFittestChromosome(); double v1 = bestSolutionSoFar.getFitnessValue(); System.out.println( "The best solution has a fitness value of " + bestSolutionSoFar.getFitnessValue()); bestSolutionSoFar.setFitnessValueDirectly(-1); System.out.println("It contains the following: "); System.out.println( "\t" + SampleFitnessFunction.getNumberOfCoinsAtGene(bestSolutionSoFar, 0) + " ml water."); System.out.println( "\t" + SampleFitnessFunction.getNumberOfCoinsAtGene(bestSolutionSoFar, 1) + " ml sugar."); System.out.println( "\t" + SampleFitnessFunction.getNumberOfCoinsAtGene(bestSolutionSoFar, 2) + " ml juice 1."); System.out.println( "\t" + SampleFitnessFunction.getNumberOfCoinsAtGene(bestSolutionSoFar, 3) + " ml juice 2."); System.out.println( "For a total of " + SampleFitnessFunction.amountOfChange(bestSolutionSoFar) + " ml."); }
/** * Construct with no System property for JGAPFactory set. * * @author Klaus Meffert * @since 3.0 */ public void testConstruct_2() { System.setProperty(Configuration.PROPERTY_JGAPFACTORY_CLASS, ""); Configuration conf = new Configuration(); assertEquals(JGAPFactory.class, conf.getJGAPFactory().getClass()); }