/* * @see org.jakstab.analysis.ConfigurableProgramAnalysis#post(org.jakstab.analysis.AbstractState, org.jakstab.analysis.StateTransformer, org.jakstab.analysis.Precision) */ @Override public Set<AbstractState> post(final AbstractState state, CFAEdge cfaEdge, Precision precision) { final RTLStatement statement = (RTLStatement) cfaEdge.getTransformer(); final ValuationState iState = (ValuationState) state; return Collections.singleton( statement.accept( new DefaultStatementVisitor<AbstractState>() { @Override protected AbstractState visitDefault(RTLStatement stmt) { return state; } @Override public AbstractState visit(RTLVariableAssignment stmt) { ValuationState post = new ValuationState(iState); Writable lhs = stmt.getLeftHandSide(); RTLExpression rhs = stmt.getRightHandSide(); AbstractDomainElement evaledRhs = iState.abstractEval(rhs); // Check for stackpointer alignment assignments (workaround for gcc compiled files) RTLVariable sp = Program.getProgram().getArchitecture().stackPointer(); if (lhs.equals(sp) && rhs instanceof RTLOperation) { RTLOperation op = (RTLOperation) rhs; if (op.getOperator().equals(Operator.AND) && op.getOperands()[0].equals(sp) && op.getOperands()[1] instanceof RTLNumber) { evaledRhs = iState.getVariableValue(sp); logger.warn("Ignoring stackpointer alignment at " + stmt.getAddress()); } } post.setVariableValue((RTLVariable) lhs, evaledRhs); return post; } @Override public AbstractState visit(RTLMemoryAssignment stmt) { ValuationState post = new ValuationState(iState); RTLMemoryLocation m = stmt.getLeftHandSide(); RTLExpression rhs = stmt.getRightHandSide(); AbstractDomainElement evaledRhs = iState.abstractEval(rhs); AbstractDomainElement evaledAddress = iState.abstractEval(m.getAddress()); post.setMemoryValue(evaledAddress, m.getBitWidth(), evaledRhs); return post; } @Override public AbstractState visit(RTLAssume stmt) { ValuationState post = new ValuationState(iState); RTLExpression assumption = stmt.getAssumption(); // TODO: implement assume if (assumption instanceof RTLOperation) { RTLOperation op = (RTLOperation) assumption; switch (op.getOperator()) { case UNSIGNED_LESS_OR_EQUAL: RTLExpression lhs = op.getOperands()[0]; RTLExpression rhs = op.getOperands()[1]; IntervalElement evaledLhs = (IntervalElement) iState.abstractEval(lhs); IntervalElement evaledRhs = (IntervalElement) iState.abstractEval(rhs); if (evaledRhs.getLeft() >= 0) { IntervalElement uLessInt = new IntervalElement( evaledRhs.getRegion(), 0, evaledRhs.getRight(), 1, evaledLhs.getBitWidth()); // TODO: Implement meet for interval elements for optimal result // uLessInt = uLessInt.meet(evaledLhs); // if uLessInt.isBot() return Collections.emptySet(); // cheap but sound solution for now: only use new interval if it has less // elements if (uLessInt.size() < evaledLhs.size()) { if (lhs instanceof RTLVariable) { post.setVariableValue((RTLVariable) lhs, uLessInt); } else if (lhs instanceof RTLMemoryLocation) { RTLMemoryLocation m = (RTLMemoryLocation) lhs; AbstractDomainElement evaledAddress = iState.abstractEval(m.getAddress()); post.setMemoryValue(evaledAddress, m.getBitWidth(), uLessInt); } } } break; default: // nothing } } return post; } @Override public AbstractState visit(RTLAlloc stmt) { ValuationState post = new ValuationState(iState); Writable lhs = stmt.getPointer(); MemoryRegion newRegion; if (stmt.getAllocationName() != null) { newRegion = MemoryRegion.create(stmt.getAllocationName()); } else { // TODO: Detect whether this allocation is unique to allow strong updates newRegion = MemoryRegion.createAsSummary("alloc" + stmt.getLabel()); } IntervalElement basePointer = new IntervalElement(newRegion, ExpressionFactory.createNumber(0, 32)); if (lhs instanceof RTLVariable) { post.setVariableValue((RTLVariable) lhs, basePointer); } else { RTLMemoryLocation m = (RTLMemoryLocation) lhs; AbstractDomainElement evaledAddress = iState.abstractEval(m.getAddress()); post.setMemoryValue(evaledAddress, m.getBitWidth(), basePointer); } return post; } @Override public AbstractState visit(RTLHavoc stmt) { ValuationState post = new ValuationState(iState); // Only create a single state with the havoc range, since this analysis // is not path sensitive post.setVariableValue( stmt.getVariable(), // new IntervalElement(ExpressionFactory.getInstance().createNumber(0, // stmt.getVariable().getBitWidth()), // (RTLNumber)stmt.getMaximum())); new IntervalElement( MemoryRegion.GLOBAL, 0, ((RTLNumber) stmt.getMaximum()).longValue(), 1, stmt.getVariable().getBitWidth())); return post; } @Override public AbstractState visit(RTLUnknownProcedureCall stmt) { ValuationState post = new ValuationState(iState); for (RTLVariable var : stmt.getDefinedVariables()) { post.setVariableValue(var, IntervalElement.getTop(var.getBitWidth())); } post.setMemoryValue( IntervalElement.getTop( Program.getProgram().getArchitecture().getAddressBitWidth()), 32, IntervalElement.getTop(32)); return post; } })); }
/** * Returns all variables used in the program. At the current state of the implementation, this * includes only registers and flags. * * @return A set containing all variables used in this program. */ public SetOfVariables getUsedVariables() { SetOfVariables result = new SetOfVariables(); for (CFAEdge edge : cfg.getEdges()) result.addAll(((RTLStatement) edge.getTransformer()).getUsedVariables()); return result; }
@Override public void run() { Runtime runtime = Runtime.getRuntime(); // Jakstab Algorithm System.out.println("Starting CPA algorithm."); AbstractState start = cpa.initStartState(transformerFactory.getInitialLocation()); worklist.add(start); reached.add(start); if (art != null) art.setRoot(start); // Set up precisions Precision precision = cpa.initPrecision(transformerFactory.getInitialLocation(), null); Map<Location, Precision> precisionMap = new HashMap<Location, Precision>(); precisionMap.put(start.getLocation(), precision); int steps = 0; statesVisited = 0; final int stepThreshold = 1000; long startTime = System.currentTimeMillis(); long lastSteps = 0; long lastTime = 0; while (!worklist.isEmpty() && !stop && (!failFast || isSound())) { statesVisited++; if (++steps == stepThreshold) { // Helps limit memory usage long now = System.currentTimeMillis(); System.gc(); long gcTime = System.currentTimeMillis() - now; logger.debug("Time for GC: " + gcTime + "ms"); now = System.currentTimeMillis(); long duration = Math.max(1, now - lastTime); long speed = (1000L * (statesVisited - lastSteps) / duration); // speed = Math.min(speed, 1000); logger.warn( "*** Reached " + reached.size() + " states, processed " + statesVisited + " states after " + (now - startTime) + "ms, at " + speed + " states/second" + (transformerFactory instanceof ResolvingTransformerFactory ? ", " + program.getInstructionCount() + " instructions." : ".")); logger.info( String.format( " Allocated heap memory: %.2f MByte", (runtime.totalMemory() - runtime.freeMemory()) / (1024.0 * 1024.0))); steps = 0; // StatsPlotter.plot((now - startTime) + "\t" + statesVisited // +"\t" + program.getInstructionCount() + "\t" + gcTime + "\t" // + speed); lastSteps = statesVisited; lastTime = now; if (Options.timeout.getValue() > 0 && (System.currentTimeMillis() - startTime > Options.timeout.getValue() * 1000)) { logger.error("Timeout after " + Options.timeout.getValue() + "s!"); stop = true; } } // We need the state before precision refinement for building the // ART AbstractState unadjustedState = worklist.pick(); /* * if (unadjustedState.getLocation().getAddress().toString().equals( * "0x00401189") //|| * unadjustedState.getLocation().getAddress().toString * ().equals("0x0040119b") || * unadjustedState.getLocation().getAddress * ().toString().equals("0x00401078") || * unadjustedState.getLocation( * ).getAddress().toString().equals("0x0040100a") ) * System.out.println("Debug " + * unadjustedState.getLocation().getAddress().toString()); */ precision = precisionMap.get(unadjustedState.getLocation()); Pair<AbstractState, Precision> pair = cpa.prec(unadjustedState, precision, reached); // Warning: The refined a is not stored in "reached", only used for // successor calculation AbstractState a = pair.getLeft(); /* * CompositeState a1 = (CompositeState) a; BasedNumberValuation a2 = * (BasedNumberValuation)a1.getComponent(1); if * (a2.getStore().isTop()) System.out.println("Debug TOP Value"); */ precision = pair.getRight(); precisionMap.put(a.getLocation(), precision); // logger.debug("Picked from worklist: " + a.getIdentifier()); // getTransformers() and post() might throw exceptions try { // For each outgoing edge // if (a.isTop()) // System.out.println("Debug TOP"); /* * if * (a.getLocation().getAddress().toString().equals("0x004106cd") * || * (a.getLocation().getAddress().toString().equals("0x00410498") * && a.getLocation().getIndex() >= 0)) * System.out.println("Debug Transformer Factory:" + * a.getLocation().getAddress().toString()); */ // Set<CFAEdge> s = transformerFactory.getTransformers(a); // System.out.println("Debug Transformer Factory:" + // a.getLocation().getAddress().toString()); for (CFAEdge cfaEdge : transformerFactory.getTransformers(a)) { Precision targetPrecision = precisionMap.get(cfaEdge.getTarget()); if (targetPrecision == null) { targetPrecision = cpa.initPrecision(cfaEdge.getTarget(), cfaEdge.getTransformer()); precisionMap.put(cfaEdge.getTarget(), targetPrecision); } // Prefix everything by current location for easier // debugging // Logger.setGlobalPrefix(cfaEdge.getSource().toString()); // if // (cfaEdge.getSource().getAddress().toString().equals("0x00401027") // && // cfaEdge.getTarget().getAddress().toString().equals("0x0040102e")) // System.out.println("Debug Edge"); // Calculate the set of abstract successors Set<AbstractState> successors = cpa.post(a, cfaEdge, targetPrecision); if (successors.isEmpty()) { logger.debug("No successors along edge " + cfaEdge + ", reached halt?"); continue; } // logger.debug("via edge " + cfaEdge.toString() + " " + // successors.size() + " successors."); // Process every successor for (AbstractState succ : successors) { // logger.debug("Processing new post state: " + // succ.getIdentifier()); // Try to merge the new state with an existing one Set<AbstractState> statesToRemove = new FastSet<AbstractState>(); Set<AbstractState> statesToAdd = new FastSet<AbstractState>(); for (AbstractState r : reached.where(0, ((CompositeState) succ).getComponent(0))) { AbstractState merged = cpa.merge(succ, r, targetPrecision); if (!merged.equals(r)) { // logger.debug("Merge of " + // succ.getIdentifier() + " and " + // r.getIdentifier() + " produced new state " + // merged.getIdentifier()); statesToRemove.add(r); statesToAdd.add(merged); } } // replace the old state in worklist and reached with // the merged version for (AbstractState r : statesToRemove) { reached.remove(r); worklist.remove(r); // art.remove(r); } for (AbstractState r : statesToAdd) { // Only add r to the worklist if it hasn't been // reached yet if (reached.add(r)) { worklist.add(r); if (art != null) art.addChild(unadjustedState, r); } } // if not stopped add to worklist if (!cpa.stop(succ, reached, targetPrecision) || this.program.checkSMPos(((CompositeState) succ).getLocation().getAddress())) { worklist.add(succ); reached.add(succ); if (art != null) art.addChild(unadjustedState, succ); } } // end for each outgoing edge } } catch (StateException e) { if (e.getState() == null) { e.setState(a); } if (art != null && !unadjustedState.equals(e.getState())) art.addChild(unadjustedState, e.getState()); throw e; } } long endTime = System.currentTimeMillis(); if (endTime - startTime > 0) { logger.info( "Processed " + statesVisited + " states at " + (1000L * statesVisited / (endTime - startTime)) + " states/second"); logger.info( String.format( "Allocated heap memory: %.2f MByte", (runtime.totalMemory() - runtime.freeMemory()) / (1024.0 * 1024.0))); } completed = worklist.isEmpty(); }