/** {@inheritDoc} */ @Override public Map<K, V> peekAll( @Nullable Collection<? extends K> keys, @Nullable GridPredicate<? super GridCacheEntry<K, V>>[] filter) { if (keys == null || keys.isEmpty()) return emptyMap(); final Collection<K> skipped = new GridLeanSet<K>(); final Map<K, V> map = peekAll0(keys, filter, skipped); if (map.size() + skipped.size() != keys.size()) { map.putAll( dht.peekAll( F.view( keys, new P1<K>() { @Override public boolean apply(K k) { return !map.containsKey(k) && !skipped.contains(k); } }), filter)); } return map; }
/** {@inheritDoc} */ @Override protected Collection<? extends GridComputeJob> split(int gridSize, Object arg) throws GridException { Collection<GridComputeJobAdapter> jobs = new ArrayList<>(gridSize); this.gridSize = gridSize; final String locNodeId = grid.localNode().id().toString(); for (int i = 0; i < gridSize; i++) { jobs.add( new GridComputeJobAdapter() { @SuppressWarnings("OverlyStrongTypeCast") @Override public Object execute() { try { Thread.sleep(1000); } catch (InterruptedException ignored) { Thread.currentThread().interrupt(); } return new GridBiTuple<>(locNodeId, 1); } }); } return jobs; }
/** @throws Exception If failed. */ public void testClientAffinity() throws Exception { GridClientData partitioned = client.data(PARTITIONED_CACHE_NAME); Collection<Object> keys = new ArrayList<>(); keys.addAll(Arrays.asList(Boolean.TRUE, Boolean.FALSE, 1, Integer.MAX_VALUE)); Random rnd = new Random(); StringBuilder sb = new StringBuilder(); // Generate some random strings. for (int i = 0; i < 100; i++) { sb.setLength(0); for (int j = 0; j < 255; j++) // Only printable ASCII symbols for test. sb.append((char) (rnd.nextInt(0x7f - 0x20) + 0x20)); keys.add(sb.toString()); } // Generate some more keys to achieve better coverage. for (int i = 0; i < 100; i++) keys.add(UUID.randomUUID()); for (Object key : keys) { UUID nodeId = grid(0).mapKeyToNode(PARTITIONED_CACHE_NAME, key).id(); UUID clientNodeId = partitioned.affinity(key); assertEquals( "Invalid affinity mapping for REST response for key: " + key, nodeId, clientNodeId); } }
/** @throws Exception If failed. */ public void testProjectionRun() throws Exception { GridClientCompute dflt = client.compute(); Collection<? extends GridClientNode> nodes = dflt.nodes(); assertEquals(NODES_CNT, nodes.size()); for (int i = 0; i < NODES_CNT; i++) { Grid g = grid(i); assert g != null; GridClientNode clientNode = dflt.node(g.localNode().id()); assertNotNull("Client node for " + g.localNode().id() + " was not found", clientNode); GridClientCompute prj = dflt.projection(clientNode); String res = prj.execute(TestTask.class.getName(), null); assertNotNull(res); assertEquals(g.localNode().id().toString(), res); } }
/** {@inheritDoc} */ @Override public Map<K, V> peekAll( @Nullable Collection<? extends K> keys, @Nullable Collection<GridCachePeekMode> modes) throws GridException { if (keys == null || keys.isEmpty()) return emptyMap(); final Collection<K> skipped = new GridLeanSet<K>(); final Map<K, V> map = !modes.contains(PARTITIONED_ONLY) ? peekAll0(keys, modes, ctx.tm().localTxx(), skipped) : new GridLeanMap<K, V>(0); if (map.size() != keys.size() && !modes.contains(NEAR_ONLY)) { map.putAll( dht.peekAll( F.view( keys, new P1<K>() { @Override public boolean apply(K k) { return !map.containsKey(k) && !skipped.contains(k); } }), modes)); } return map; }
/** {@inheritDoc} */ @Override public Collection<UUID> nodeIds() { Collection<UUID> ids = new GridLeanSet<UUID>(); ids.add(cctx.nodeId()); ids.addAll(mappings.keySet()); return ids; }
/** * Removes locks regardless of whether they are owned or not for given version and keys. * * @param ver Lock version. * @param keys Keys. */ @SuppressWarnings({"unchecked"}) public void removeLocks(GridCacheVersion ver, Collection<? extends K> keys) { if (keys.isEmpty()) return; Collection<GridRichNode> nodes = ctx.remoteNodes(keys); try { // Send request to remove from remote nodes. GridDistributedUnlockRequest<K, V> req = new GridDistributedUnlockRequest<K, V>(keys.size()); req.version(ver); for (K key : keys) { while (true) { GridDistributedCacheEntry<K, V> entry = peekexx(key); try { if (entry != null) { GridCacheMvccCandidate<K> cand = entry.candidate(ver); if (cand != null) { // Remove candidate from local node first. if (entry.removeLock(cand.version())) { // If there is only local node in this lock's topology, // then there is no reason to distribute the request. if (nodes.isEmpty()) continue; req.addKey(entry.key(), entry.getOrMarshalKeyBytes(), ctx); } } } break; } catch (GridCacheEntryRemovedException ignored) { if (log.isDebugEnabled()) log.debug( "Attempted to remove lock from removed entry (will retry) [rmvVer=" + ver + ", entry=" + entry + ']'); } } } if (nodes.isEmpty()) return; req.completedVersions(ctx.tm().committedVersions(ver), ctx.tm().rolledbackVersions(ver)); if (!req.keyBytes().isEmpty()) // We don't wait for reply to this message. ctx.io().safeSend(nodes, req, null); } catch (GridException ex) { U.error(log, "Failed to unlock the lock for keys: " + keys, ex); } }
/** @throws Exception If failed. */ public void testTopologyListener() throws Exception { final Collection<UUID> added = new ArrayList<>(1); final Collection<UUID> rmvd = new ArrayList<>(1); final CountDownLatch addedLatch = new CountDownLatch(1); final CountDownLatch rmvLatch = new CountDownLatch(1); assertEquals(NODES_CNT, client.compute().refreshTopology(false, false).size()); GridClientTopologyListener lsnr = new GridClientTopologyListener() { @Override public void onNodeAdded(GridClientNode node) { added.add(node.nodeId()); addedLatch.countDown(); } @Override public void onNodeRemoved(GridClientNode node) { rmvd.add(node.nodeId()); rmvLatch.countDown(); } }; client.addTopologyListener(lsnr); try { Grid g = startGrid(NODES_CNT + 1); UUID id = g.localNode().id(); assertTrue(addedLatch.await(2 * TOP_REFRESH_FREQ, MILLISECONDS)); assertEquals(1, added.size()); assertEquals(id, F.first(added)); stopGrid(NODES_CNT + 1); assertTrue(rmvLatch.await(2 * TOP_REFRESH_FREQ, MILLISECONDS)); assertEquals(1, rmvd.size()); assertEquals(id, F.first(rmvd)); } finally { client.removeTopologyListener(lsnr); stopGrid(NODES_CNT + 1); } }
/** {@inheritDoc} */ @Override public V peek(K key, @Nullable Collection<GridCachePeekMode> modes) throws GridException { V val = null; if (!modes.contains(PARTITIONED_ONLY)) { try { val = peek0(true, key, modes, ctx.tm().txx()); } catch (GridCacheFilterFailedException ignored) { if (log.isDebugEnabled()) log.debug("Filter validation failed for key: " + key); return null; } } return val == null && !modes.contains(NEAR_ONLY) ? dht.peek(key, modes) : val; }
/** {@inheritDoc} */ @Override public Map<GridRichNode, Collection<K>> mapKeysToNodes(Collection<? extends K> keys) { Map<GridRichNode, Collection<K>> map = new HashMap<GridRichNode, Collection<K>>(); for (K key : keys) { Collection<GridRichNode> nodes = ctx.allNodes(key); for (GridRichNode node : nodes) { Collection<K> keyCol = map.get(node); if (keyCol == null) map.put(node, keyCol = new LinkedList<K>()); keyCol.add(key); } } return map; }
/** @throws Exception If failed. */ public void testAffinityExecute() throws Exception { GridClientCompute dflt = client.compute(); GridClientData data = client.data(PARTITIONED_CACHE_NAME); Collection<? extends GridClientNode> nodes = dflt.nodes(); assertEquals(NODES_CNT, nodes.size()); for (int i = 0; i < NODES_CNT; i++) { Grid g = grid(i); assert g != null; int affinityKey = -1; for (int key = 0; key < 10000; key++) { if (g.localNode().id().equals(data.affinity(key))) { affinityKey = key; break; } } if (affinityKey == -1) throw new Exception("Unable to found key for which node is primary: " + g.localNode().id()); GridClientNode clientNode = dflt.node(g.localNode().id()); assertNotNull("Client node for " + g.localNode().id() + " was not found", clientNode); String res = dflt.affinityExecute(TestTask.class.getName(), PARTITIONED_CACHE_NAME, affinityKey, null); assertNotNull(res); assertEquals(g.localNode().id().toString(), res); } }
/** * @param cctx Registry. * @param keys Keys to lock. * @param tx Transaction. * @param read Read flag. * @param retval Flag to return value or not. * @param timeout Lock acquisition timeout. * @param filter Filter. */ public GridNearLockFuture( GridCacheContext<K, V> cctx, Collection<? extends K> keys, @Nullable GridNearTxLocal<K, V> tx, boolean read, boolean retval, long timeout, GridPredicate<GridCacheEntry<K, V>>[] filter) { super(cctx.kernalContext(), CU.boolReducer()); assert cctx != null; assert keys != null; this.cctx = cctx; this.keys = keys; this.tx = tx; this.read = read; this.retval = retval; this.timeout = timeout; this.filter = filter; threadId = tx == null ? Thread.currentThread().getId() : tx.threadId(); lockVer = tx != null ? tx.xidVersion() : cctx.versions().next(); futId = GridUuid.randomUuid(); entries = new ArrayList<>(keys.size()); log = U.logger(ctx, logRef, GridNearLockFuture.class); if (timeout > 0) { timeoutObj = new LockTimeoutObject(); cctx.time().addTimeoutObject(timeoutObj); } valMap = new ConcurrentHashMap8<>(keys.size(), 1f); }
/** * Removes locks regardless of whether they are owned or not for given version and keys. * * @param ver Lock version. * @param keys Keys. */ @SuppressWarnings({"unchecked"}) public void removeLocks(GridCacheVersion ver, Collection<? extends K> keys) { if (keys.isEmpty()) return; try { Collection<GridRichNode> affNodes = null; int keyCnt = -1; Map<GridNode, GridNearUnlockRequest<K, V>> map = null; for (K key : keys) { // Send request to remove from remote nodes. GridNearUnlockRequest<K, V> req = null; while (true) { GridDistributedCacheEntry<K, V> entry = peekExx(key); try { if (entry != null) { GridCacheMvccCandidate<K> cand = entry.candidate(ver); if (cand != null) { if (affNodes == null) { affNodes = CU.allNodes(ctx, cand.topologyVersion()); keyCnt = (int) Math.ceil((double) keys.size() / affNodes.size()); map = new HashMap<GridNode, GridNearUnlockRequest<K, V>>(affNodes.size()); } GridRichNode primary = CU.primary0(ctx.affinity(key, affNodes)); if (!primary.isLocal()) { req = map.get(primary); if (req == null) { map.put(primary, req = new GridNearUnlockRequest<K, V>(keyCnt)); req.version(ver); } } // Remove candidate from local node first. if (entry.removeLock(cand.version())) { if (primary.isLocal()) { dht.removeLocks(primary.id(), ver, F.asList(key), true); assert req == null; continue; } req.addKey(entry.key(), entry.getOrMarshalKeyBytes(), ctx); } } } break; } catch (GridCacheEntryRemovedException ignored) { if (log.isDebugEnabled()) log.debug( "Attempted to remove lock from removed entry (will retry) [rmvVer=" + ver + ", entry=" + entry + ']'); } } } if (map == null || map.isEmpty()) return; Collection<GridCacheVersion> committed = ctx.tm().committedVersions(ver); Collection<GridCacheVersion> rolledback = ctx.tm().rolledbackVersions(ver); for (Map.Entry<GridNode, GridNearUnlockRequest<K, V>> mapping : map.entrySet()) { GridNode n = mapping.getKey(); GridDistributedUnlockRequest<K, V> req = mapping.getValue(); if (!req.keyBytes().isEmpty()) { req.completedVersions(committed, rolledback); // We don't wait for reply to this message. ctx.io().send(n, req); } } } catch (GridException ex) { U.error(log, "Failed to unlock the lock for keys: " + keys, ex); } }
/** {@inheritDoc} */ @Override public void unlockAll( Collection<? extends K> keys, GridPredicate<? super GridCacheEntry<K, V>>[] filter) { if (keys.isEmpty()) return; try { GridCacheVersion ver = null; Collection<GridRichNode> affNodes = null; int keyCnt = -1; Map<GridRichNode, GridNearUnlockRequest<K, V>> map = null; Collection<K> locKeys = new LinkedList<K>(); GridCacheVersion obsoleteVer = ctx.versions().next(); for (K key : keys) { while (true) { GridDistributedCacheEntry<K, V> entry = peekExx(key); if (entry == null || !ctx.isAll(entry.wrap(false), filter)) break; // While. try { GridCacheMvccCandidate<K> cand = entry.candidate(ctx.nodeId(), Thread.currentThread().getId()); if (cand != null) { ver = cand.version(); if (affNodes == null) { affNodes = CU.allNodes(ctx, cand.topologyVersion()); keyCnt = (int) Math.ceil((double) keys.size() / affNodes.size()); map = new HashMap<GridRichNode, GridNearUnlockRequest<K, V>>(affNodes.size()); } // Send request to remove from remote nodes. GridRichNode primary = CU.primary0(ctx.affinity(key, affNodes)); GridNearUnlockRequest<K, V> req = map.get(primary); if (req == null) { map.put(primary, req = new GridNearUnlockRequest<K, V>(keyCnt)); req.version(ver); } // Remove candidate from local node first. GridCacheMvccCandidate<K> rmv = entry.removeLock(); if (rmv != null) { if (!rmv.reentry()) { if (ver != null && !ver.equals(rmv.version())) throw new GridException( "Failed to unlock (if keys were locked separately, " + "then they need to be unlocked separately): " + keys); if (!primary.isLocal()) { assert req != null; req.addKey(entry.key(), entry.getOrMarshalKeyBytes(), ctx); } else locKeys.add(key); if (log.isDebugEnabled()) log.debug("Removed lock (will distribute): " + rmv); } else if (log.isDebugEnabled()) log.debug( "Current thread still owns lock (or there are no other nodes)" + " [lock=" + rmv + ", curThreadId=" + Thread.currentThread().getId() + ']'); } // Try to evict near entry if it's dht-mapped locally. evictNearEntry(entry, obsoleteVer); } break; } catch (GridCacheEntryRemovedException ignore) { if (log.isDebugEnabled()) log.debug("Attempted to unlock removed entry (will retry): " + entry); } } } if (ver == null) return; for (Map.Entry<GridRichNode, GridNearUnlockRequest<K, V>> mapping : map.entrySet()) { GridRichNode n = mapping.getKey(); GridDistributedUnlockRequest<K, V> req = mapping.getValue(); if (n.isLocal()) dht.removeLocks(ctx.nodeId(), req.version(), locKeys, true); else if (!req.keyBytes().isEmpty()) // We don't wait for reply to this message. ctx.io().send(n, req); } } catch (GridException ex) { U.error(log, "Failed to unlock the lock for keys: " + keys, ex); } }
/** @throws Exception If failed. */ public void testEmptyProjections() throws Exception { final GridClientCompute dflt = client.compute(); Collection<? extends GridClientNode> nodes = dflt.nodes(); assertEquals(NODES_CNT, nodes.size()); Iterator<? extends GridClientNode> iter = nodes.iterator(); final GridClientCompute singleNodePrj = dflt.projection(Collections.singletonList(iter.next())); final GridClientNode second = iter.next(); final GridClientPredicate<GridClientNode> noneFilter = new GridClientPredicate<GridClientNode>() { @Override public boolean apply(GridClientNode node) { return false; } }; final GridClientPredicate<GridClientNode> targetFilter = new GridClientPredicate<GridClientNode>() { @Override public boolean apply(GridClientNode node) { return node.nodeId().equals(second.nodeId()); } }; GridTestUtils.assertThrows( log(), new Callable<Object>() { @Override public Object call() throws Exception { return dflt.projection(noneFilter).log(-1, -1); } }, GridServerUnreachableException.class, null); GridTestUtils.assertThrows( log(), new Callable<Object>() { @Override public Object call() throws Exception { return singleNodePrj.projection(second); } }, GridClientException.class, null); GridTestUtils.assertThrows( log(), new Callable<Object>() { @Override public Object call() throws Exception { return singleNodePrj.projection(targetFilter); } }, GridClientException.class, null); }
/** * Maps keys to nodes. Note that we can not simply group keys by nodes and send lock request as * such approach does not preserve order of lock acquisition. Instead, keys are split in * continuous groups belonging to one primary node and locks for these groups are acquired * sequentially. * * @param keys Keys. */ private void map(Iterable<? extends K> keys) { try { GridDiscoveryTopologySnapshot snapshot = topSnapshot.get(); assert snapshot != null; long topVer = snapshot.topologyVersion(); assert topVer > 0; if (CU.affinityNodes(cctx, topVer).isEmpty()) { onDone( new GridTopologyException( "Failed to map keys for near-only cache (all " + "partition nodes left the grid).")); return; } ConcurrentLinkedDeque8<GridNearLockMapping<K, V>> mappings = new ConcurrentLinkedDeque8<>(); // Assign keys to primary nodes. GridNearLockMapping<K, V> map = null; for (K key : keys) { GridNearLockMapping<K, V> updated = map(key, map, topVer); // If new mapping was created, add to collection. if (updated != map) mappings.add(updated); map = updated; } if (isDone()) { if (log.isDebugEnabled()) log.debug("Abandoning (re)map because future is done: " + this); return; } if (log.isDebugEnabled()) log.debug("Starting (re)map for mappings [mappings=" + mappings + ", fut=" + this + ']'); // Create mini futures. for (Iterator<GridNearLockMapping<K, V>> iter = mappings.iterator(); iter.hasNext(); ) { GridNearLockMapping<K, V> mapping = iter.next(); GridNode node = mapping.node(); Collection<K> mappedKeys = mapping.mappedKeys(); assert !mappedKeys.isEmpty(); GridNearLockRequest<K, V> req = null; Collection<K> distributedKeys = new ArrayList<>(mappedKeys.size()); boolean explicit = false; for (K key : mappedKeys) { while (true) { GridNearCacheEntry<K, V> entry = null; try { entry = cctx.near().entryExx(key, topVer); if (!cctx.isAll(entry.wrap(false), filter)) { if (log.isDebugEnabled()) log.debug("Entry being locked did not pass filter (will not lock): " + entry); onComplete(false, false); return; } // Removed exception may be thrown here. GridCacheMvccCandidate<K> cand = addEntry(topVer, entry, node.id()); if (isDone()) { if (log.isDebugEnabled()) log.debug( "Abandoning (re)map because future is done after addEntry attempt " + "[fut=" + this + ", entry=" + entry + ']'); return; } if (cand != null) { if (tx == null && !cand.reentry()) cctx.mvcc().addExplicitLock(threadId, cand, snapshot); GridTuple3<GridCacheVersion, V, byte[]> val = entry.versionedValue(); if (val == null) { GridDhtCacheEntry<K, V> dhtEntry = dht().peekExx(key); try { if (dhtEntry != null) val = dhtEntry.versionedValue(topVer); } catch (GridCacheEntryRemovedException ignored) { assert dhtEntry.obsolete() : " Got removed exception for non-obsolete entry: " + dhtEntry; if (log.isDebugEnabled()) log.debug( "Got removed exception for DHT entry in map (will ignore): " + dhtEntry); } } GridCacheVersion dhtVer = null; if (val != null) { dhtVer = val.get1(); valMap.put(key, val); } if (!cand.reentry()) { if (req == null) { req = new GridNearLockRequest<>( topVer, cctx.nodeId(), threadId, futId, lockVer, inTx(), implicitTx(), implicitSingleTx(), read, isolation(), isInvalidate(), timeout, syncCommit(), syncRollback(), mappedKeys.size(), inTx() ? tx.size() : mappedKeys.size(), inTx() ? tx.groupLockKey() : null, inTx() && tx.partitionLock(), inTx() ? tx.subjectId() : null); mapping.request(req); } distributedKeys.add(key); GridCacheTxEntry<K, V> writeEntry = tx != null ? tx.writeMap().get(key) : null; if (tx != null) tx.addKeyMapping(key, mapping.node()); req.addKeyBytes( key, node.isLocal() ? null : entry.getOrMarshalKeyBytes(), retval && dhtVer == null, dhtVer, // Include DHT version to match remote DHT entry. writeEntry, inTx() ? tx.entry(key).drVersion() : null, cctx); // Clear transfer required flag since we are sending message. if (writeEntry != null) writeEntry.transferRequired(false); } if (cand.reentry()) explicit = tx != null && !entry.hasLockCandidate(tx.xidVersion()); } else // Ignore reentries within transactions. explicit = tx != null && !entry.hasLockCandidate(tx.xidVersion()); if (explicit) tx.addKeyMapping(key, mapping.node()); break; } catch (GridCacheEntryRemovedException ignored) { assert entry.obsolete() : "Got removed exception on non-obsolete entry: " + entry; if (log.isDebugEnabled()) log.debug("Got removed entry in lockAsync(..) method (will retry): " + entry); } } // Mark mapping explicit lock flag. if (explicit) { boolean marked = tx != null && tx.markExplicit(node.id()); assert tx == null || marked; } } if (!distributedKeys.isEmpty()) mapping.distributedKeys(distributedKeys); else { assert mapping.request() == null; iter.remove(); } } cctx.mvcc().recheckPendingLocks(); proceedMapping(mappings); } catch (GridException ex) { onError(ex); } }
/** {@inheritDoc} */ @SuppressWarnings({"unchecked"}) @Override public void unlockAll( Collection<? extends K> keys, GridPredicate<? super GridCacheEntry<K, V>>[] filter) { if (keys == null || keys.isEmpty()) return; Collection<? extends GridNode> nodes = ctx.remoteNodes(keys); try { GridDistributedUnlockRequest<K, V> req = new GridDistributedUnlockRequest<K, V>(keys.size()); for (K key : keys) { GridDistributedCacheEntry<K, V> entry = entryexx(key); if (!ctx.isAll(entry.wrap(false), filter)) continue; // Unlock local lock first. GridCacheMvccCandidate<K> rmv = entry.removeLock(); if (rmv != null && !nodes.isEmpty()) { if (!rmv.reentry()) { req.addKey(entry.key(), entry.getOrMarshalKeyBytes(), ctx); // We are assuming that lock ID is the same for all keys. req.version(rmv.version()); if (log.isDebugEnabled()) log.debug("Removed lock (will distribute): " + rmv); } else { if (log.isDebugEnabled()) log.debug( "Locally unlocked lock reentry without distributing to other nodes [removed=" + rmv + ", entry=" + entry + ']'); } } else { if (log.isDebugEnabled()) log.debug( "Current thread still owns lock (or there are no other nodes) [lock=" + rmv + ", curThreadId=" + Thread.currentThread().getId() + ']'); } } // Don't proceed of no keys to unlock. if (req.keyBytes().isEmpty()) { if (log.isDebugEnabled()) log.debug("No keys to unlock locally (was it reentry unlock?): " + keys); return; } // We don't wait for reply to this message. Receiving side will have // to make sure that unlock requests don't come before lock requests. ctx.io().safeSend(nodes, req, null); } catch (GridException e) { U.error(log, "Failed to unlock keys: " + keys, e); } }
/** {@inheritDoc} */ @SuppressWarnings({"unchecked", "ThrowableInstanceNeverThrown"}) @Override protected GridFuture<Boolean> lockAllAsync( Collection<? extends K> keys, long timeout, GridCacheTxLocalEx<K, V> tx, boolean isInvalidate, boolean isRead, boolean retval, GridCacheTxIsolation isolation, GridPredicate<? super GridCacheEntry<K, V>>[] filter) { if (keys.isEmpty()) return new GridFinishedFuture<Boolean>(ctx.kernalContext(), true); Collection<GridRichNode> nodes = ctx.remoteNodes(keys); final GridReplicatedLockFuture<K, V> fut = new GridReplicatedLockFuture<K, V>(ctx, keys, tx, this, nodes, timeout, filter); GridDistributedLockRequest<K, V> req = new GridDistributedLockRequest<K, V>( locNodeId, Thread.currentThread().getId(), fut.futureId(), fut.version(), tx != null, isRead, isolation, isInvalidate, timeout, keys.size()); try { // Must add future before redying locks. if (!ctx.mvcc().addFuture(fut)) throw new IllegalStateException("Duplicate future ID: " + fut); boolean distribute = false; for (K key : keys) { while (true) { GridDistributedCacheEntry<K, V> entry = null; try { entry = entryexx(key); if (!ctx.isAll(entry.wrap(false), filter)) { if (log.isDebugEnabled()) log.debug("Entry being locked did not pass filter (will not lock): " + entry); fut.onDone(false); return fut; } // Removed exception may be thrown here. GridCacheMvccCandidate<K> cand = fut.addEntry(entry); if (cand != null) { req.addKeyBytes( key, cand.reentry() ? null : entry.getOrMarshalKeyBytes(), retval, entry.localCandidates(fut.version()), ctx); req.completedVersions( ctx.tm().committedVersions(fut.version()), ctx.tm().rolledbackVersions(fut.version())); distribute = !cand.reentry(); } else if (fut.isDone()) return fut; break; } catch (GridCacheEntryRemovedException ignored) { if (log.isDebugEnabled()) log.debug("Got removed entry in lockAsync(..) method (will retry): " + entry); } } } // If nothing to distribute at this point, // then all locks are reentries. if (!distribute) fut.complete(true); if (nodes.isEmpty()) fut.readyLocks(); // No reason to send request if all locks are locally re-entered, // or if timeout is negative and local locks could not be acquired. if (fut.isDone()) return fut; try { ctx.io() .safeSend( fut.nodes(), req, new P1<GridNode>() { @Override public boolean apply(GridNode node) { fut.onNodeLeft(node.id()); return !fut.isDone(); } }); } catch (GridException e) { U.error( log, "Failed to send lock request to node [nodes=" + U.toShortString(nodes) + ", req=" + req + ']', e); fut.onError(e); } return fut; } catch (GridException e) { Throwable err = new GridException("Failed to acquire asynchronous lock for keys: " + keys, e); // Clean-up. fut.onError(err); ctx.mvcc().removeFuture(fut); return fut; } }