/** * Calculate the error for the given method and dataset. * * @param method The method to use. * @param data The data to use. * @return The error. */ public double calculateError(MLMethod method, MLDataSet data) { if (this.dataset.getNormHelper().getOutputColumns().size() == 1) { ColumnDefinition cd = this.dataset.getNormHelper().getOutputColumns().get(0); if (cd.getDataType() == ColumnType.nominal) { return EncogUtility.calculateClassificationError((MLClassification) method, data); } } return EncogUtility.calculateRegressionError((MLRegression) method, data); }
/** * Calculate the error for this neural network. * * @param data The training set. * @return The error percentage. */ @Override public double calculateError(final MLDataSet data) { return EncogUtility.calculateRegressionError(this, data); }