public static int getOffset(NetworkNode node) { LeftTupleSource lt; int offset = 1; if (NodeTypeEnums.isTerminalNode(node)) { lt = ((TerminalNode) node).getLeftTupleSource(); offset++; } else if (node.getType() == NodeTypeEnums.RightInputAdaterNode) { lt = ((RightInputAdapterNode) node).getLeftTupleSource(); } else { lt = (LeftTupleSource) node; } while (lt.getType() != NodeTypeEnums.LeftInputAdapterNode) { offset++; lt = lt.getLeftTupleSource(); } return offset; }
private void switchOnDoBetaNode( NetworkNode node, TupleSets<LeftTuple> trgTuples, InternalWorkingMemory wm, TupleSets<LeftTuple> srcTuples, TupleSets<LeftTuple> stagedLeftTuples, LeftTupleSinkNode sink, BetaMemory bm, AccumulateMemory am) { if (log.isTraceEnabled()) { int offset = getOffset(node); log.trace("{} rightTuples {}", indent(offset), bm.getStagedRightTuples().toStringSizes()); } switch (node.getType()) { case NodeTypeEnums.JoinNode: { pJoinNode.doNode((JoinNode) node, sink, bm, wm, srcTuples, trgTuples, stagedLeftTuples); break; } case NodeTypeEnums.NotNode: { pNotNode.doNode((NotNode) node, sink, bm, wm, srcTuples, trgTuples, stagedLeftTuples); break; } case NodeTypeEnums.ExistsNode: { pExistsNode.doNode( (ExistsNode) node, sink, bm, wm, srcTuples, trgTuples, stagedLeftTuples); break; } case NodeTypeEnums.AccumulateNode: { pAccNode.doNode( (AccumulateNode) node, sink, am, wm, srcTuples, trgTuples, stagedLeftTuples); break; } } }
private boolean evalBetaNode( LeftInputAdapterNode liaNode, PathMemory pmem, NetworkNode node, Memory nodeMem, SegmentMemory[] smems, int smemIndex, TupleSets<LeftTuple> trgTuples, InternalWorkingMemory wm, LinkedList<StackEntry> stack, boolean processRian, RuleExecutor executor, TupleSets<LeftTuple> srcTuples, TupleSets<LeftTuple> stagedLeftTuples, LeftTupleSinkNode sink) { BetaNode betaNode = (BetaNode) node; BetaMemory bm; AccumulateMemory am = null; if (NodeTypeEnums.AccumulateNode == node.getType()) { am = (AccumulateMemory) nodeMem; bm = am.getBetaMemory(); } else { bm = (BetaMemory) nodeMem; } if (processRian && betaNode.isRightInputIsRiaNode()) { // if the subnetwork is nested in this segment, it will create srcTuples containing // peer LeftTuples, suitable for the node in the main path. doRiaNode( wm, liaNode, pmem, srcTuples, betaNode, sink, smems, smemIndex, nodeMem, bm, stack, executor); return true; // return here, doRiaNode queues the evaluation on the stack, which is necessary // to handled nested query nodes } switchOnDoBetaNode(node, trgTuples, wm, srcTuples, stagedLeftTuples, sink, bm, am); return false; }
public TupleSets<LeftTuple> evalNode( LeftInputAdapterNode liaNode, PathMemory pmem, NetworkNode node, long bit, Memory nodeMem, SegmentMemory[] smems, int smemIndex, InternalWorkingMemory wm, LinkedList<StackEntry> stack, boolean processRian, RuleExecutor executor, TupleSets<LeftTuple> srcTuples, SegmentMemory smem, TupleSets<LeftTuple> stagedLeftTuples, LeftTupleSinkNode sink) { TupleSets<LeftTuple> trgTuples = new TupleSetsImpl<LeftTuple>(); if (NodeTypeEnums.isBetaNode(node)) { boolean exitInnerEval = evalBetaNode( liaNode, pmem, node, nodeMem, smems, smemIndex, trgTuples, wm, stack, processRian, executor, srcTuples, stagedLeftTuples, sink); if (exitInnerEval) { return null; } } else { boolean exitInnerEval = false; switch (node.getType()) { case NodeTypeEnums.EvalConditionNode: { pEvalNode.doNode( (EvalConditionNode) node, (EvalMemory) nodeMem, sink, wm, srcTuples, trgTuples, stagedLeftTuples); break; } case NodeTypeEnums.FromNode: { pFromNode.doNode( (FromNode) node, (FromMemory) nodeMem, sink, wm, srcTuples, trgTuples, stagedLeftTuples); break; } case NodeTypeEnums.ReactiveFromNode: { pReactiveFromNode.doNode( (ReactiveFromNode) node, (ReactiveFromNode.ReactiveFromMemory) nodeMem, sink, wm, srcTuples, trgTuples, stagedLeftTuples); break; } case NodeTypeEnums.QueryElementNode: { exitInnerEval = evalQueryNode( liaNode, pmem, node, bit, nodeMem, smems, smemIndex, trgTuples, wm, stack, srcTuples, sink, stagedLeftTuples); break; } case NodeTypeEnums.TimerConditionNode: { pTimerNode.doNode( (TimerNode) node, (TimerNodeMemory) nodeMem, pmem, smem, sink, wm, srcTuples, trgTuples, stagedLeftTuples); break; } case NodeTypeEnums.ConditionalBranchNode: { pBranchNode.doNode( (ConditionalBranchNode) node, (ConditionalBranchMemory) nodeMem, sink, wm, srcTuples, trgTuples, stagedLeftTuples, executor); break; } } if (exitInnerEval && trgTuples.isEmpty()) { return null; } } return trgTuples; }
public void innerEval( LeftInputAdapterNode liaNode, PathMemory pmem, NetworkNode node, long bit, Memory nodeMem, SegmentMemory[] smems, int smemIndex, TupleSets<LeftTuple> trgTuples, InternalWorkingMemory wm, LinkedList<StackEntry> stack, boolean processRian, RuleExecutor executor) { TupleSets<LeftTuple> srcTuples; SegmentMemory smem = smems[smemIndex]; TupleSets<LeftTuple> stagedLeftTuples = null; while (true) { srcTuples = trgTuples; // previous target, is now the source if (log.isTraceEnabled()) { int offset = getOffset(node); log.trace( "{} {} {} {}", indent(offset), ++cycle, node.toString(), srcTuples.toStringSizes()); } boolean emptySrcTuples = srcTuples.isEmpty(); if (!(NodeTypeEnums.isBetaNode(node) && ((BetaNode) node).isRightInputIsRiaNode())) { // The engine cannot skip a ria node, as the dirty might be several levels deep if (emptySrcTuples && smem.getDirtyNodeMask() == 0) { // empty sources and segment is not dirty, skip to non empty src tuples or dirty segment. boolean foundDirty = false; for (int i = ++smemIndex, length = smems.length; i < length; i++) { if (log.isTraceEnabled()) { int offset = getOffset(node); log.trace("{} Skip Segment {}", indent(offset), i - 1); } // this is needed for subnetworks that feed into a parent network that has no right // inputs, // and may not yet be initialized if (smem.isEmpty() && !NodeTypeEnums.isTerminalNode(smem.getTipNode())) { SegmentUtilities.createChildSegments( wm, smem, ((LeftTupleSource) smem.getTipNode()).getSinkPropagator()); } smem = smems[i]; bit = 1; srcTuples = smem.getStagedLeftTuples().takeAll(); emptySrcTuples = srcTuples.isEmpty(); node = smem.getRootNode(); nodeMem = smem.getNodeMemories().getFirst(); if (!emptySrcTuples || smem.getDirtyNodeMask() != 0 || (NodeTypeEnums.isBetaNode(node) && ((BetaNode) node).isRightInputIsRiaNode())) { // break if dirty or if we reach a subnetwork. It must break for subnetworks, so they // can be searched. foundDirty = true; smemIndex = i; break; } } if (!foundDirty) { break; } } if (log.isTraceEnabled()) { int offset = getOffset(node); log.trace("{} Segment {}", indent(offset), smemIndex); log.trace( "{} {} {} {}", indent(offset), cycle, node.toString(), srcTuples.toStringSizes()); } } long dirtyMask = smem.getDirtyNodeMask(); if (emptySrcTuples) { while ((dirtyMask & bit) == 0 && node != smem.getTipNode() && !(NodeTypeEnums.isBetaNode(node) && ((BetaNode) node).isRightInputIsRiaNode())) { if (log.isTraceEnabled()) { int offset = getOffset(node); log.trace("{} Skip Node {}", indent(offset), node); } bit = bit << 1; // shift to check the next node node = ((LeftTupleSource) node).getSinkPropagator().getFirstLeftTupleSink(); nodeMem = nodeMem.getNext(); } } if (NodeTypeEnums.isTerminalNode(node)) { TerminalNode rtn = (TerminalNode) node; if (node.getType() == NodeTypeEnums.QueryTerminalNode) { pQtNode.doNode((QueryTerminalNode) rtn, wm, srcTuples, stack); } else { pRtNode.doNode(rtn, wm, srcTuples, executor); } break; } else if (NodeTypeEnums.RightInputAdaterNode == node.getType()) { doRiaNode2(wm, srcTuples, (RightInputAdapterNode) node); break; } stagedLeftTuples = getTargetStagedLeftTuples(node, wm, smem); LeftTupleSinkNode sink = ((LeftTupleSource) node).getSinkPropagator().getFirstLeftTupleSink(); trgTuples = evalNode( liaNode, pmem, node, bit, nodeMem, smems, smemIndex, wm, stack, processRian, executor, srcTuples, smem, stagedLeftTuples, sink); if (trgTuples == null) { break; // Queries exists and has been placed StackEntry, and there are no current trgTuples // to process } if (node != smem.getTipNode()) { // get next node and node memory in the segment node = sink; nodeMem = nodeMem.getNext(); bit = bit << 1; } else { // Reached end of segment, start on new segment. smem.getFirst().getStagedLeftTuples().addAll(stagedLeftTuples); // must put back all the LTs // end of SegmentMemory, so we know that stagedLeftTuples is not null SegmentPropagator.propagate(smem, trgTuples, wm); bit = 1; smem = smems[++smemIndex]; trgTuples = smem.getStagedLeftTuples().takeAll(); if (log.isTraceEnabled()) { int offset = getOffset(node); log.trace("{} Segment {}", indent(offset), smemIndex); } node = smem.getRootNode(); nodeMem = smem.getNodeMemories().getFirst(); } processRian = true; // make sure it's reset, so ria nodes are processed } if (stagedLeftTuples != null && !stagedLeftTuples.isEmpty()) { smem.getFirst().getStagedLeftTuples().addAll(stagedLeftTuples); // must put back all the LTs } }
public void evalStackEntry( StackEntry entry, LinkedList<StackEntry> stack, RuleExecutor executor, InternalWorkingMemory wm) { NetworkNode node = entry.getNode(); Memory nodeMem = entry.getNodeMem(); TupleSets<LeftTuple> trgTuples = entry.getTrgTuples(); if (node.getType() == NodeTypeEnums.QueryElementNode) { // copy across the results, if any from the query node memory QueryElementNodeMemory qmem = (QueryElementNodeMemory) nodeMem; qmem.setNodeCleanWithoutNotify(); trgTuples.addAll(qmem.getResultLeftTuples()); } LeftTupleSinkNode sink = entry.getSink(); PathMemory pmem = entry.getRmem(); SegmentMemory[] smems = entry.getSmems(); int smemIndex = entry.getSmemIndex(); boolean processRian = entry.isProcessRian(); long bit = entry.getBit(); if (entry.isResumeFromNextNode()) { SegmentMemory smem = smems[smemIndex]; if (node != smem.getTipNode()) { // get next node and node memory in the segment LeftTupleSink nextSink = sink.getNextLeftTupleSinkNode(); if (nextSink == null) { node = sink; } else { // there is a nested subnetwork, take out path node = nextSink; } nodeMem = nodeMem.getNext(); bit = bit << 1; // update bit to new node } else { // Reached end of segment, start on new segment. SegmentPropagator.propagate(smem, trgTuples, wm); smem = smems[++smemIndex]; trgTuples = smem.getStagedLeftTuples().takeAll(); node = smem.getRootNode(); nodeMem = smem.getNodeMemories().getFirst(); bit = 1; // update bit to start of new segment } } if (log.isTraceEnabled()) { int offset = getOffset(node); log.trace("{} Resume {} {}", indent(offset), node.toString(), trgTuples.toStringSizes()); } innerEval( entry.getLiaNode(), pmem, node, bit, nodeMem, smems, smemIndex, trgTuples, wm, stack, processRian, executor); }
public void eval2( LeftInputAdapterNode liaNode, PathMemory rmem, NetworkNode node, Memory nodeMem, SegmentMemory[] smems, int smemIndex, LeftTupleSets trgTuples, InternalWorkingMemory wm, LinkedList<StackEntry> stack, Set<String> visitedRules, boolean processRian, RuleExecutor executor) { LeftTupleSets srcTuples; SegmentMemory smem = smems[smemIndex]; while (true) { srcTuples = trgTuples; // previous target, is now the source if (log.isTraceEnabled()) { int offset = getOffset(node); log.trace( "{} {} {} {}", indent(offset), ++cycle, node.toString(), srcTuples.toStringSizes()); } if (NodeTypeEnums.isTerminalNode(node)) { TerminalNode rtn = (TerminalNode) node; if (node.getType() == NodeTypeEnums.QueryTerminalNode) { pQtNode.doNode((QueryTerminalNode) rtn, wm, srcTuples, stack); } else { pRtNode.doNode(rtn, wm, srcTuples, executor); } return; } else if (NodeTypeEnums.RightInputAdaterNode == node.getType()) { doRiaNode2(wm, srcTuples, (RightInputAdapterNode) node, stack); return; } LeftTupleSets stagedLeftTuples; if (node == smem.getTipNode() && smem.getFirst() != null) { // we are about to process the segment tip, allow it to merge insert/update/delete clashes // Can happen if the next segments have not yet been initialized stagedLeftTuples = smem.getFirst().getStagedLeftTuples(); } else { stagedLeftTuples = null; } LeftTupleSinkNode sink = ((LeftTupleSource) node).getSinkPropagator().getFirstLeftTupleSink(); trgTuples = new LeftTupleSets(); if (NodeTypeEnums.isBetaNode(node)) { BetaNode betaNode = (BetaNode) node; BetaMemory bm = null; AccumulateMemory am = null; if (NodeTypeEnums.AccumulateNode == node.getType()) { am = (AccumulateMemory) nodeMem; bm = am.getBetaMemory(); } else { bm = (BetaMemory) nodeMem; } if (processRian && betaNode.isRightInputIsRiaNode()) { // if the subnetwork is nested in this segment, it will create srcTuples containing // peer LeftTuples, suitable for the node in the main path. doRiaNode( wm, liaNode, rmem, srcTuples, betaNode, sink, smems, smemIndex, nodeMem, bm, stack, visitedRules, executor); return; // return here is doRiaNode queues the evaluation on the stack, which is necessary // to handled nested query nodes } if (!bm.getDequeu().isEmpty()) { // If there are no staged RightTuples, then process the Dequeue, popping entries, until // another insert/expiration clash RightTupleSets rightTuples = bm.getStagedRightTuples(); if (rightTuples.isEmpty()) { // nothing staged, so now process the Dequeu Deque<RightTuple> que = bm.getDequeu(); while (!que.isEmpty()) { RightTuple rightTuple = que.peekFirst(); if (rightTuple.getPropagationContext().getType() == PropagationContext.EXPIRATION && // Cannot pop an expired fact, if the insert/update has not yet been evaluated. rightTuple.getStagedType() != LeftTuple.NONE) { break; } switch (rightTuple.getPropagationContext().getType()) { case PropagationContext.INSERTION: case PropagationContext.RULE_ADDITION: rightTuples.addInsert(rightTuple); break; case PropagationContext.MODIFICATION: rightTuples.addUpdate(rightTuple); break; case PropagationContext.DELETION: case PropagationContext.EXPIRATION: case PropagationContext.RULE_REMOVAL: rightTuples.addDelete(rightTuple); break; } que.removeFirst(); } } if (!bm.getDequeu().isEmpty()) { // The DeQue is not empty, add StackEntry for reprocessing. StackEntry stackEntry = new StackEntry( liaNode, node, sink, rmem, nodeMem, smems, smemIndex, trgTuples, visitedRules, false); stack.add(stackEntry); } } switch (node.getType()) { case NodeTypeEnums.JoinNode: { pJoinNode.doNode( (JoinNode) node, sink, bm, wm, srcTuples, trgTuples, stagedLeftTuples); break; } case NodeTypeEnums.NotNode: { pNotNode.doNode((NotNode) node, sink, bm, wm, srcTuples, trgTuples, stagedLeftTuples); break; } case NodeTypeEnums.ExistsNode: { pExistsNode.doNode( (ExistsNode) node, sink, bm, wm, srcTuples, trgTuples, stagedLeftTuples); break; } case NodeTypeEnums.AccumulateNode: { pAccNode.doNode( (AccumulateNode) node, sink, am, wm, srcTuples, trgTuples, stagedLeftTuples); break; } } } else { switch (node.getType()) { case NodeTypeEnums.EvalConditionNode: { pEvalNode.doNode( (EvalConditionNode) node, (EvalMemory) nodeMem, sink, wm, srcTuples, trgTuples, stagedLeftTuples); break; } case NodeTypeEnums.FromNode: { pFromNode.doNode( (FromNode) node, (FromMemory) nodeMem, sink, wm, srcTuples, trgTuples, stagedLeftTuples); break; } case NodeTypeEnums.QueryElementNode: { QueryElementNodeMemory qmem = (QueryElementNodeMemory) nodeMem; if (srcTuples.isEmpty() && qmem.getResultLeftTuples().isEmpty()) { // no point in evaluating query element, and setting up stack, if there is nothing // to process break; } QueryElementNode qnode = (QueryElementNode) node; if (visitedRules == Collections.<String>emptySet()) { visitedRules = new HashSet<String>(); } visitedRules.add(qnode.getQueryElement().getQueryName()); // result tuples can happen when reactivity occurs inside of the query, prior to // evaluation // we will need special behaviour to add the results again, when this query result // resumes trgTuples.addAll(qmem.getResultLeftTuples()); if (!srcTuples.isEmpty()) { // only process the Query Node if there are src tuples StackEntry stackEntry = new StackEntry( liaNode, node, sink, rmem, nodeMem, smems, smemIndex, trgTuples, visitedRules, true); stack.add(stackEntry); pQueryNode.doNode( qnode, (QueryElementNodeMemory) nodeMem, stackEntry, sink, wm, srcTuples); SegmentMemory qsmem = ((QueryElementNodeMemory) nodeMem).getQuerySegmentMemory(); List<PathMemory> qrmems = qsmem.getPathMemories(); // Build the evaluation information for each 'or' branch // Exception fo the last, place each entry on the stack, the last one evaluate now. for (int i = qrmems.size() - 1; i >= 0; i--) { PathMemory qrmem = qrmems.get(i); rmem = qrmem; smems = qrmem.getSegmentMemories(); smemIndex = 0; smem = smems[smemIndex]; // 0 liaNode = (LeftInputAdapterNode) smem.getRootNode(); if (liaNode == smem.getTipNode()) { // segment only has liaNode in it // nothing is staged in the liaNode, so skip to next segment smem = smems[++smemIndex]; // 1 node = smem.getRootNode(); nodeMem = smem.getNodeMemories().getFirst(); } else { // lia is in shared segment, so point to next node node = liaNode.getSinkPropagator().getFirstLeftTupleSink(); nodeMem = smem.getNodeMemories().getFirst().getNext(); // skip the liaNode memory } trgTuples = smem.getStagedLeftTuples(); if (i != 0 && !trgTuples.isEmpty()) { // All entries except the last should be placed on the stack for evaluation // later. stackEntry = new StackEntry( liaNode, node, null, rmem, nodeMem, smems, smemIndex, trgTuples, visitedRules, false); if (log.isTraceEnabled()) { int offset = getOffset(stackEntry.getNode()); log.trace( "{} ORQueue branch={} {} {}", indent(offset), i, stackEntry.getNode().toString(), trgTuples.toStringSizes()); } stack.add(stackEntry); } } processRian = true; // make sure it's reset, so ria nodes are processed continue; } break; } case NodeTypeEnums.ConditionalBranchNode: { pBranchNode.doNode( (ConditionalBranchNode) node, (ConditionalBranchMemory) nodeMem, sink, wm, srcTuples, trgTuples, stagedLeftTuples, executor); break; } } } if (node != smem.getTipNode()) { // get next node and node memory in the segment node = sink; nodeMem = nodeMem.getNext(); } else { // Reached end of segment, start on new segment. SegmentPropagator.propagate(smem, trgTuples, wm); smem = smems[++smemIndex]; trgTuples = smem.getStagedLeftTuples(); if (log.isTraceEnabled()) { log.trace("Segment {}", smemIndex); } node = (LeftTupleSink) smem.getRootNode(); nodeMem = smem.getNodeMemories().getFirst(); } processRian = true; // make sure it's reset, so ria nodes are processed } }
public void eval1( LeftInputAdapterNode liaNode, PathMemory rmem, NetworkNode node, Memory nodeMem, SegmentMemory[] smems, int smemIndex, LeftTupleSets trgTuples, InternalWorkingMemory wm, LinkedList<StackEntry> stack, Set<String> visitedRules, boolean processRian, RuleExecutor executor) { while (true) { eval2( liaNode, rmem, node, nodeMem, smems, smemIndex, trgTuples, wm, stack, visitedRules, processRian, executor); // eval if (!stack.isEmpty()) { StackEntry entry = stack.removeLast(); node = entry.getNode(); nodeMem = entry.getNodeMem(); trgTuples = entry.getTrgTuples(); if (node.getType() == NodeTypeEnums.QueryElementNode) { // copy across the results, if any from the query node memory trgTuples.addAll(((QueryElementNodeMemory) nodeMem).getResultLeftTuples()); } LeftTupleSinkNode sink = entry.getSink(); rmem = entry.getRmem(); smems = entry.getSmems(); smemIndex = entry.getSmemIndex(); visitedRules = entry.getVisitedRules(); if (NodeTypeEnums.isBetaNode(node)) { // queued beta nodes do not want their ria node evaluated, otherwise there is recursion processRian = false; } else { processRian = true; } if (entry.isResumeFromNextNode()) { SegmentMemory smem = smems[smemIndex]; if (node != smem.getTipNode()) { // get next node and node memory in the segment LeftTupleSink nextSink = sink.getNextLeftTupleSinkNode(); if (nextSink == null) { node = sink; } else { // there is a nested subnetwork, take out path node = nextSink; } nodeMem = nodeMem.getNext(); } else { // Reached end of segment, start on new segment. SegmentPropagator.propagate(smem, trgTuples, wm); smem = smems[++smemIndex]; trgTuples = smem.getStagedLeftTuples(); node = (LeftTupleSink) smem.getRootNode(); nodeMem = smem.getNodeMemories().getFirst(); } } if (log.isTraceEnabled()) { int offset = getOffset(node); log.trace("{} Resume {} {}", indent(offset), node.toString(), trgTuples.toStringSizes()); } } else { return; // stack is empty return; } } }