/** * Process a dataset file for a clustering problem. * * @param nfexamples Name of the dataset file * @param train The dataset file is for training or for test * @throws java.io.IOException if there is any semantical, lexical or sintactical error in the * input file. */ public void processClusterDataset(String nfexamples, boolean train) throws IOException { try { // Load in memory a dataset that contains a classification problem IS.readSet(nfexamples, train); nData = IS.getNumInstances(); nInputs = Attributes.getInputNumAttributes(); nVariables = nInputs + Attributes.getOutputNumAttributes(); if (Attributes.getOutputNumAttributes() != 0) { System.out.println("This algorithm can not process datasets with outputs"); System.out.println("All outputs will be removed"); } // Initialize and fill our own tables X = new double[nData][nInputs]; missing = new boolean[nData][nInputs]; // Maximum and minimum of inputs iMaximum = new double[nInputs]; iMinimum = new double[nInputs]; // Maximum and minimum for output data oMaximum = 0; oMinimum = 0; // All values are casted into double/integer nClasses = 0; for (int i = 0; i < X.length; i++) { Instance inst = IS.getInstance(i); for (int j = 0; j < nInputs; j++) { X[i][j] = IS.getInputNumericValue(i, j); missing[i][j] = inst.getInputMissingValues(j); if (X[i][j] > iMaximum[j] || i == 0) { iMaximum[j] = X[i][j]; } if (X[i][j] < iMinimum[j] || i == 0) { iMinimum[j] = X[i][j]; } } } } catch (Exception e) { System.out.println("DBG: Exception in readSet"); e.printStackTrace(); } }
/** * Returns the fraction of correct instances of the instance's set for the rule 'regla' * * @param i Number of the rule * @return Fraction of correct instances of the instance's set for the rule 'regla' */ private double getAccuracy(int i) { Instance instancia; double Accuracy; num_cubiertas = 0; num_correctas = 0; for (int k = 0; k < instancias.getNumInstances(); k++) { instancia = instancias.getInstance(k); cubierta = regla.reglaCubreInstancia(instancia); if (cubierta) { num_cubiertas++; clase = instancia.getOutputNominalValuesInt(0); if (clase == i) num_correctas++; } } Accuracy = (double) num_correctas / (double) num_cubiertas; if (num_cubiertas == 0) Accuracy = 0; return Accuracy; }
/** * Removes from the instance's set those instances that matches with the rule * * @param i Numebr of the rule */ private void removeInstancesCovered(int i) { for (int k = 0; k < instancias.getNumInstances(); k++) { instancia = instancias.getInstance(k); /*System.out.print(k+" "); instancia.print(); System.out.println();*/ cubierta = regla.reglaCubreInstancia(instancia); if (cubierta) { // System.out.println("CUBIERTA"); clase = instancia.getOutputNominalValuesInt(0); // if(clase==i){ instancias.removeInstance(k); instancia.print(); System.out.println(); k = k - 1; // } } } }
public LVQ(String ficheroScript) { super(ficheroScript); try { referencia = new InstanceSet(); referencia.readSet(ficheroReferencia, false); /*Normalize the data*/ normalizarReferencia(); } catch (Exception e) { System.err.println(e); System.exit(1); } }
private void normalizarReferencia() throws CheckException { int i, j, cont = 0, k; Instance temp; boolean hecho; double caja[]; StringTokenizer tokens; boolean nulls[]; /*Check if dataset corresponding with a classification problem*/ if (Attributes.getOutputNumAttributes() < 1) { throw new CheckException( "This dataset haven´t outputs, so it not corresponding to a classification problem."); } else if (Attributes.getOutputNumAttributes() > 1) { throw new CheckException("This dataset have more of one output."); } if (Attributes.getOutputAttribute(0).getType() == Attribute.REAL) { throw new CheckException( "This dataset have an input attribute with floating values, so it not corresponding to a classification problem."); } datosReferencia = new double[referencia.getNumInstances()][Attributes.getInputNumAttributes()]; clasesReferencia = new int[referencia.getNumInstances()]; caja = new double[1]; /*Get the number of instances that have a null value*/ for (i = 0; i < referencia.getNumInstances(); i++) { temp = referencia.getInstance(i); nulls = temp.getInputMissingValues(); datosReferencia[i] = referencia.getInstance(i).getAllInputValues(); for (j = 0; j < nulls.length; j++) if (nulls[j]) datosReferencia[i][j] = 0.0; caja = referencia.getInstance(i).getAllOutputValues(); clasesReferencia[i] = (int) caja[0]; for (k = 0; k < datosReferencia[i].length; k++) { if (Attributes.getInputAttribute(k).getType() == Attribute.NOMINAL) { datosReferencia[i][k] /= Attributes.getInputAttribute(k).getNominalValuesList().size() - 1; } else { datosReferencia[i][k] -= Attributes.getInputAttribute(k).getMinAttribute(); datosReferencia[i][k] /= Attributes.getInputAttribute(k).getMaxAttribute() - Attributes.getInputAttribute(k).getMinAttribute(); } } } }
// Write data matrix X to disk, in KEEL format private void write_results(String output) { // File OutputFile = new File(output_train_name.substring(1, output_train_name.length()-1)); try { FileWriter file_write = new FileWriter(output); file_write.write(IS.getHeader()); // now, print the normalized data file_write.write("@data\n"); for (int i = 0; i < ndatos; i++) { file_write.write(X[i][0]); for (int j = 1; j < nvariables; j++) { file_write.write("," + X[i][j]); } file_write.write("\n"); } file_write.close(); } catch (IOException e) { System.out.println("IO exception = " + e); System.exit(-1); } }
public void ejecutar() { int i, j, l, m; double alfai; int nClases; int claseObt; boolean marcas[]; boolean notFound; int init; int clasSel[]; int baraje[]; int pos, tmp; String instanciasIN[]; String instanciasOUT[]; long tiempo = System.currentTimeMillis(); /* Getting the number of differents classes */ nClases = 0; for (i = 0; i < clasesTrain.length; i++) if (clasesTrain[i] > nClases) nClases = clasesTrain[i]; nClases++; /* Shuffle the train set */ baraje = new int[datosTrain.length]; Randomize.setSeed(semilla); for (i = 0; i < datosTrain.length; i++) baraje[i] = i; for (i = 0; i < datosTrain.length; i++) { pos = Randomize.Randint(i, datosTrain.length - 1); tmp = baraje[i]; baraje[i] = baraje[pos]; baraje[pos] = tmp; } /* * Inicialization of the flagged instaces vector for a posterior * elimination */ marcas = new boolean[datosTrain.length]; for (i = 0; i < datosTrain.length; i++) marcas[i] = false; if (datosTrain.length > 0) { // marcas[baraje[0]] = true; //the first instance is included always nSel = n_p; if (nSel < nClases) nSel = nClases; } else { System.err.println("Input dataset is empty"); nSel = 0; } clasSel = new int[nClases]; System.out.print("Selecting initial neurons... "); // at least, there must be 1 neuron of each class at the beginning init = nClases; for (i = 0; i < nClases && i < datosTrain.length; i++) { pos = Randomize.Randint(0, datosTrain.length - 1); tmp = 0; while ((clasesTrain[pos] != i || marcas[pos]) && tmp < datosTrain.length) { pos = (pos + 1) % datosTrain.length; tmp++; } if (tmp < datosTrain.length) marcas[pos] = true; else init--; // clasSel[i] = i; } for (i = init; i < Math.min(nSel, datosTrain.length); i++) { tmp = 0; pos = Randomize.Randint(0, datosTrain.length - 1); while (marcas[pos]) { pos = (pos + 1) % datosTrain.length; tmp++; } // if(i<nClases){ // notFound = true; // do{ // for(j=i-1;j>=0 && notFound;j--){ // if(clasSel[j] == clasesTrain[pos]) // notFound = false; // } // if(!notFound) // pos = Randomize.Randint (0, datosTrain.length-1); // }while(!notFound); // } // clasSel[i] = clasesTrain[pos]; marcas[pos] = true; init++; } nSel = init; System.out.println("Initial neurons selected: " + nSel); /* Building of the S set from the flags */ conjS = new double[nSel][datosTrain[0].length]; clasesS = new int[nSel]; for (m = 0, l = 0; m < datosTrain.length; m++) { if (marcas[m]) { // the instance must be copied to the solution for (j = 0; j < datosTrain[0].length; j++) { conjS[l][j] = datosTrain[m][j]; } clasesS[l] = clasesTrain[m]; l++; } } alfai = alpha; boolean change = true; /* Body of the LVQ algorithm. */ // Train the network for (int it = 0; it < T && change; it++) { change = false; alpha = alfai; for (i = 1; i < datosTrain.length; i++) { // search for the nearest neuron to training instance pos = NN(nSel, conjS, datosTrain[baraje[i]]); // nearest neuron labels correctly the class of training // instance? if (clasesS[pos] != clasesTrain[baraje[i]]) { // NO - repel // the neuron for (j = 0; j < conjS[pos].length; j++) { conjS[pos][j] = conjS[pos][j] - alpha * (datosTrain[baraje[i]][j] - conjS[pos][j]); } change = true; } else { // YES - migrate the neuron towards the input vector for (j = 0; j < conjS[pos].length; j++) { conjS[pos][j] = conjS[pos][j] + alpha * (datosTrain[baraje[i]][j] - conjS[pos][j]); } } alpha = nu * alpha; } // Shuffle again the training partition baraje = new int[datosTrain.length]; for (i = 0; i < datosTrain.length; i++) baraje[i] = i; for (i = 0; i < datosTrain.length; i++) { pos = Randomize.Randint(i, datosTrain.length - 1); tmp = baraje[i]; baraje[i] = baraje[pos]; baraje[pos] = tmp; } } System.out.println( "LVQ " + relation + " " + (double) (System.currentTimeMillis() - tiempo) / 1000.0 + "s"); // Classify the train data set instanciasIN = new String[datosReferencia.length]; instanciasOUT = new String[datosReferencia.length]; for (i = 0; i < datosReferencia.length; i++) { /* Classify the instance selected in this iteration */ Attribute a = Attributes.getOutputAttribute(0); int tipo = a.getType(); claseObt = KNN.evaluacionKNN2(1, conjS, clasesS, datosReferencia[i], nClases); if (tipo != Attribute.NOMINAL) { instanciasIN[i] = new String(String.valueOf(clasesReferencia[i])); instanciasOUT[i] = new String(String.valueOf(claseObt)); } else { instanciasIN[i] = new String(a.getNominalValue(clasesReferencia[i])); instanciasOUT[i] = new String(a.getNominalValue(claseObt)); } } escribeSalida( ficheroSalida[0], instanciasIN, instanciasOUT, entradas, salida, nEntradas, relation); // Classify the test data set normalizarTest(); instanciasIN = new String[datosTest.length]; instanciasOUT = new String[datosTest.length]; for (i = 0; i < datosTest.length; i++) { /* Classify the instance selected in this iteration */ Attribute a = Attributes.getOutputAttribute(0); int tipo = a.getType(); claseObt = KNN.evaluacionKNN2(1, conjS, clasesS, datosTest[i], nClases); if (tipo != Attribute.NOMINAL) { instanciasIN[i] = new String(String.valueOf(clasesTest[i])); instanciasOUT[i] = new String(String.valueOf(claseObt)); } else { instanciasIN[i] = new String(a.getNominalValue(clasesTest[i])); instanciasOUT[i] = new String(a.getNominalValue(claseObt)); } } escribeSalida( ficheroSalida[1], instanciasIN, instanciasOUT, entradas, salida, nEntradas, relation); // Print the network to a file printNetworkToFile(ficheroSalida[2], referencia.getHeader()); }
/** * Constructor with all the attributes to initialize * * @param ficheroTrain Train file * @param ficheroTest Test file * @param fSalidaTr Out-put train file * @param fSalidaTst Out-put test file * @param fsalida Out-put file * @param semilla seed */ public Prism( String ficheroTrain, String ficheroTest, String fSalidaTr, String fSalidaTst, String fsalida, long semilla) { ficheroSalida = fsalida; ficheroSalidaTr = fSalidaTr; ficheroSalidaTst = fSalidaTst; seed = semilla; datosTrain = new ConjDatos(); // datosEval = new ConjDatos(); datosTest = new ConjDatos(); train = new Dataset(); test = new Dataset(); s = new Selector(0, 0, 0.); conjunto_reglas = new ConjReglas(); try { Randomize.setSeed(seed); System.out.println("la semilla es " + seed); train.leeConjunto(ficheroTrain, true); test.leeConjunto(ficheroTest, false); // if (train.hayAtributosContinuos() /*|| train.hayAtributosDiscretos()*/) { System.err.println("\nPrism may not work properly with real or integer attributes.\n"); // System.exit(-1); hayContinuos = true; } if (!hayContinuos) { train.calculaMasComunes(); // eval.calculaMasComunes(); test.calculaMasComunes(); datosTrain = creaConjunto( train); // Leemos los datos de entrenamiento (todos seguidos como un // String)//datosEval = creaConjunto(eval); datosTest = creaConjunto(test); valores = train.getX2(); // obtengo los valores nominales clases = train.getC2(); clasitas = train.getC(); /*System.out.println(train.getndatos()); System.out.println(train.getnentradas()); for(int i=0;i<train.getndatos();i++){ for(int j=0;j<train.getnentradas();j++) System.out.print(valores[i][j]); System.out.print(clases[i]);System.out.println(clasitas[i]);}*/ // COMENZAMOS EL ALGORITMO PRISM // FOR EACH CLASS C clases = train.dameClases(); int unavez = 0, candidato; for (int i = 0; i < train.getnclases(); i++) { System.out.println("CLASE :" + clases[i] + "\n"); // initialize E to the instance set /*Cuando haya que inicializar de nuevo el conjunto de instancias no es necesario insertar aquellas que se eliminaron, sino que nos va a bastar con inicializar otra vez el conjunto mediante el fichero de entrenamiento. Por eso hay un metodo para insertar una instancia*/ train.leeConjunto(ficheroTrain, false); nombre_atributos = train.dameNombres(); instancias = train.getInstanceSet(); // While E contains instances in class C while (train.hayInstanciasDeClaseC(i)) { // Create a rule R with an empty left-hand side that predicts class C regla = new Complejo(train.getnclases()); regla.setClase(i); regla.adjuntaNombreAtributos(nombre_atributos); // esto lo hacemos solo aqui pq luego vamos quitando selectores del almacen almacen = hazSelectores(train); almacen.adjuntaNombreAtributos(nombre_atributos); do { // FOR EACH ATTRIBUTE A NOT MENTIONED IN R, AND EACH VALUE V accuracy_ant = -1.; p = 0; int seleccionados[] = new int[almacen.size()]; for (int jj = 0; jj < almacen.size(); jj++) seleccionados[jj] = 0; System.out.println(); for (int j = 0; j < almacen.size(); j++) { // tenemos que quitar el selector anterior if (j > 0) regla.removeSelector(s); s = almacen.getSelector(j); // if(i==0) s.print(); // CONSIDER ADDING THE CONDITION A=V TO THE LHS OF R regla.addSelector(s); accuracy = getAccuracy(i); // if(i==0) { System.out.println("correctas " + num_correctas + " cubiertas " + num_cubiertas); System.out.println("Acurracy " + accuracy); // } if ((accuracy > accuracy_ant) || ((accuracy == accuracy_ant) && (num_correctas > p))) { // if((accuracy==accuracy_ant) &&(num_correctas>p)){ // System.out.println("atn "+accuracy_ant); // System.out.println("ahora "+accuracy); accuracy_ant = accuracy; seleccionado = j; p = num_correctas; // si se encuentra un superior hay que quitar // todo lo q se hay ido almacenando en esta iteracion for (int jj = 0; jj < almacen.size(); jj++) seleccionados[jj] = 0; // } } else { if ((accuracy == accuracy_ant) && (num_correctas == p)) { seleccionados[seleccionado] = 1; seleccionados[j] = 1; } } } // seleccionamos uno de los seleccionados en el caso de empate int contador = 0; for (int jj = 0; jj < almacen.size(); jj++) { if (seleccionados[jj] == 1) { contador++; System.out.println("OPCION " + jj); } } if (contador > 0) { candidato = Randomize.RandintClosed(1, contador); contador = 0; for (int jj = 0; jj < almacen.size(); jj++) { if (seleccionados[jj] == 1) { contador++; if (contador == candidato) seleccionado = jj; } } } System.out.println("ELEGIDO " + seleccionado); // antes hay que quitar el q metimos regla.removeSelector(s); s = almacen.getSelector(seleccionado); s.print(); // ADD A=V TO R regla.addSelector(s); /*AHORA HAY QUE QUITAR DEL ALMACEN SE SELECTORES AQUELLOS QUE HACEN REFERENCIA AL ATRIBUTO SELECCIONADO*/ // obtener el atributo del selector ganador atributo = s.getAtributo(); // se borran todos los q tengan ese atributo // System.out.println("ALMACEN");almacen.print(); almacen.removeSelectorAtributo(atributo); reglaPerfecta = perfectRule(regla, train); } while (!reglaPerfecta && (regla.size() < train.getnentradas())); System.out.println("\n"); System.out.println("\nREGLA............................................"); regla.print(); System.out.println("\n"); /*necesitamos evaluar la regla para obtener la salida del metodo para compararla con la salida esperada*/ evaluarComplejo(regla, datosTrain); // INCLUIMOS ESTA REGLA YA PARA EL CONJUNTO FINAL DE REGLAS conjunto_reglas.addRegla(regla); // REMOVE THE INSTANCES COVERED BY R FROM E // Instance instancia; /*for(int k=0;k<instancias.getNumInstances();k++){ instancia=instancias.getInstance(k); System.out.print(k+" "); instancia.print(); System.out.println(); }*/ removeInstancesCovered(i); for (int k = 0; k < instancias.getNumInstances(); k++) { instancia = instancias.getInstance(k); clase = instancia.getOutputNominalValuesInt(0); if (clase == i) { System.out.print(k + " "); instancia.print(); System.out.println(); } } // instancias.print(); System.out.println("\n"); } // del while } // del for de las clases // EVALUAMOS LA CALIDAD DE LAS REGLAS int[] clasesEval; clasesEval = train.getC(); muestPorClaseEval = new int[train.getnclases()]; for (int j = 0; j < train.getnclases(); j++) { muestPorClaseEval[j] = 0; for (int i = 0; i < datosTrain.size(); i++) { if ( /*valorClases[j]*/ j == clasesEval[i]) { muestPorClaseEval[j]++; } } } conjunto_reglas.eliminaRepetidos(1); evReg = new EvaluaCalidadReglas( conjunto_reglas, datosTrain, datosTest, muestPorClaseEval, muestPorClaseEval, clases); // GENERAMOS LA SALIDA generaSalida(); System.out.println("la semilla es " + seed); } // del if } catch (IOException e) { System.err.println("There was a problem while trying to read the dataset files:"); System.err.println("-> " + e); // System.exit(0); } }
/** * Returns the header of the data set with the attributes' information * * @return The header of the data set */ public String getHeader() { return IS.getHeader(); }
/** * Process a dataset file for a classification problem. * * @param nfejemplos Name of the dataset file * @param train The dataset file is for training or for test * @throws java.io.IOException if there is any semantical, lexical or sintactical error in the * input file. */ public void processClassifierDataset(String nfejemplos, boolean train) throws IOException { try { // Load in memory a dataset that contains a classification problem IS.readSet(nfejemplos, train); nData = IS.getNumInstances(); nInputs = Attributes.getInputNumAttributes(); nVariables = nInputs + Attributes.getOutputNumAttributes(); // Check that there is only one output variable and // it is nominal if (Attributes.getOutputNumAttributes() > 1) { System.out.println("This algorithm can not process MIMO datasets"); System.out.println("All outputs but the first one will be removed"); } boolean noOutputs = false; if (Attributes.getOutputNumAttributes() < 1) { System.out.println("This algorithm can not process datasets without outputs"); System.out.println("Zero-valued output generated"); noOutputs = true; } // Initialize and fill our own tables X = new double[nData][nInputs]; missing = new boolean[nData][nInputs]; C = new int[nData]; // Maximum and minimum of inputs iMaximum = new double[nInputs]; iMinimum = new double[nInputs]; // Maximum and minimum for output data oMaximum = 0; oMinimum = 0; // All values are casted into double/integer nClasses = 0; for (int i = 0; i < X.length; i++) { Instance inst = IS.getInstance(i); for (int j = 0; j < nInputs; j++) { X[i][j] = IS.getInputNumericValue(i, j); missing[i][j] = inst.getInputMissingValues(j); if (X[i][j] > iMaximum[j] || i == 0) { iMaximum[j] = X[i][j]; } if (X[i][j] < iMinimum[j] || i == 0) { iMinimum[j] = X[i][j]; } } if (noOutputs) { C[i] = 0; } else { C[i] = (int) IS.getOutputNumericValue(i, 0); } if (C[i] > nClasses) { nClasses = C[i]; } } nClasses++; System.out.println("Number of classes=" + nClasses); } catch (Exception e) { System.out.println("DBG: Exception in readSet"); e.printStackTrace(); } }
/** Process the training and test files provided in the parameters file to the constructor. */ public void process() { // declarations double[] outputs; double[] outputs2; Instance neighbor; double dist, mean; int actual; Randomize rnd = new Randomize(); Instance ex; gCenter kmeans = null; int iterations = 0; double E; double prevE; int totalMissing = 0; boolean allMissing = true; rnd.setSeed(semilla); // PROCESS try { // Load in memory a dataset that contains a classification problem IS.readSet(input_train_name, true); int in = 0; int out = 0; ndatos = IS.getNumInstances(); nvariables = Attributes.getNumAttributes(); nentradas = Attributes.getInputNumAttributes(); nsalidas = Attributes.getOutputNumAttributes(); X = new String[ndatos][nvariables]; // matrix with transformed data kmeans = new gCenter(K, ndatos, nvariables); timesSeen = new FreqList[nvariables]; mostCommon = new String[nvariables]; // first, we choose k 'means' randomly from all // instances totalMissing = 0; for (int i = 0; i < ndatos; i++) { Instance inst = IS.getInstance(i); if (inst.existsAnyMissingValue()) totalMissing++; } if (totalMissing == ndatos) allMissing = true; else allMissing = false; for (int numMeans = 0; numMeans < K; numMeans++) { do { actual = (int) (ndatos * rnd.Rand()); ex = IS.getInstance(actual); } while (ex.existsAnyMissingValue() && !allMissing); kmeans.copyCenter(ex, numMeans); } // now, iterate adjusting clusters' centers and // instances to them prevE = 0; iterations = 0; do { for (int i = 0; i < ndatos; i++) { Instance inst = IS.getInstance(i); kmeans.setClusterOf(inst, i); } // set new centers kmeans.recalculateCenters(IS); // compute RMSE E = 0; for (int i = 0; i < ndatos; i++) { Instance inst = IS.getInstance(i); E += kmeans.distance(inst, kmeans.getClusterOf(i)); } iterations++; // System.out.println(iterations+"\t"+E); if (Math.abs(prevE - E) == 0) iterations = maxIter; else prevE = E; } while (E > minError && iterations < maxIter); for (int i = 0; i < ndatos; i++) { Instance inst = IS.getInstance(i); in = 0; out = 0; for (int j = 0; j < nvariables; j++) { Attribute a = Attributes.getAttribute(j); direccion = a.getDirectionAttribute(); tipo = a.getType(); if (direccion == Attribute.INPUT) { if (tipo != Attribute.NOMINAL && !inst.getInputMissingValues(in)) { X[i][j] = new String(String.valueOf(inst.getInputRealValues(in))); } else { if (!inst.getInputMissingValues(in)) X[i][j] = inst.getInputNominalValues(in); else { actual = kmeans.getClusterOf(i); X[i][j] = new String(kmeans.valueAt(actual, j)); } } in++; } else { if (direccion == Attribute.OUTPUT) { if (tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out)) { X[i][j] = new String(String.valueOf(inst.getOutputRealValues(out))); } else { if (!inst.getOutputMissingValues(out)) X[i][j] = inst.getOutputNominalValues(out); else { actual = kmeans.getClusterOf(i); X[i][j] = new String(kmeans.valueAt(actual, j)); } } out++; } } } } } catch (Exception e) { System.out.println("Dataset exception = " + e); e.printStackTrace(); System.exit(-1); } write_results(output_train_name); /** ************************************************************************************ */ // does a test file associated exist? if (input_train_name.compareTo(input_test_name) != 0) { try { // Load in memory a dataset that contains a classification problem IStest.readSet(input_test_name, false); int in = 0; int out = 0; ndatos = IStest.getNumInstances(); nvariables = Attributes.getNumAttributes(); nentradas = Attributes.getInputNumAttributes(); nsalidas = Attributes.getOutputNumAttributes(); for (int i = 0; i < ndatos; i++) { Instance inst = IStest.getInstance(i); in = 0; out = 0; for (int j = 0; j < nvariables; j++) { Attribute a = Attributes.getAttribute(j); direccion = a.getDirectionAttribute(); tipo = a.getType(); if (direccion == Attribute.INPUT) { if (tipo != Attribute.NOMINAL && !inst.getInputMissingValues(in)) { X[i][j] = new String(String.valueOf(inst.getInputRealValues(in))); } else { if (!inst.getInputMissingValues(in)) X[i][j] = inst.getInputNominalValues(in); else { actual = kmeans.getClusterOf(i); X[i][j] = new String(kmeans.valueAt(actual, j)); } } in++; } else { if (direccion == Attribute.OUTPUT) { if (tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out)) { X[i][j] = new String(String.valueOf(inst.getOutputRealValues(out))); } else { if (!inst.getOutputMissingValues(out)) X[i][j] = inst.getOutputNominalValues(out); else { actual = kmeans.getClusterOf(i); X[i][j] = new String(kmeans.valueAt(actual, j)); } } out++; } } } } } catch (Exception e) { System.out.println("Dataset exception = " + e); e.printStackTrace(); System.exit(-1); } write_results(output_test_name); } }