private void normalizarTest() { int i, j, cont = 0, k; Instance temp; boolean hecho; double caja[]; StringTokenizer tokens; boolean nulls[]; /* Check if dataset corresponding with a classification problem */ if (Attributes.getOutputNumAttributes() < 1) { System.err.println( "This dataset haven´t outputs, so it not corresponding to a classification problem."); System.exit(-1); } else if (Attributes.getOutputNumAttributes() > 1) { System.err.println("This dataset have more of one output."); System.exit(-1); } if (Attributes.getOutputAttribute(0).getType() == Attribute.REAL) { System.err.println( "This dataset have an input attribute with floating values, so it not corresponding to a classification problem."); System.exit(-1); } datosTest = new double[test.getNumInstances()][Attributes.getInputNumAttributes()]; clasesTest = new int[test.getNumInstances()]; caja = new double[1]; for (i = 0; i < test.getNumInstances(); i++) { temp = test.getInstance(i); nulls = temp.getInputMissingValues(); datosTest[i] = test.getInstance(i).getAllInputValues(); for (j = 0; j < nulls.length; j++) if (nulls[j]) datosTest[i][j] = 0.0; caja = test.getInstance(i).getAllOutputValues(); clasesTest[i] = (int) caja[0]; for (k = 0; k < datosTest[i].length; k++) { if (Attributes.getInputAttribute(k).getType() == Attribute.NOMINAL) { datosTest[i][k] /= Attributes.getInputAttribute(k).getNominalValuesList().size() - 1; } else { datosTest[i][k] -= Attributes.getInputAttribute(k).getMinAttribute(); datosTest[i][k] /= Attributes.getInputAttribute(k).getMaxAttribute() - Attributes.getInputAttribute(k).getMinAttribute(); } } } }
/** * Process a dataset file for a clustering problem. * * @param nfexamples Name of the dataset file * @param train The dataset file is for training or for test * @throws java.io.IOException if there is any semantical, lexical or sintactical error in the * input file. */ public void processClusterDataset(String nfexamples, boolean train) throws IOException { try { // Load in memory a dataset that contains a classification problem IS.readSet(nfexamples, train); nData = IS.getNumInstances(); nInputs = Attributes.getInputNumAttributes(); nVariables = nInputs + Attributes.getOutputNumAttributes(); if (Attributes.getOutputNumAttributes() != 0) { System.out.println("This algorithm can not process datasets with outputs"); System.out.println("All outputs will be removed"); } // Initialize and fill our own tables X = new double[nData][nInputs]; missing = new boolean[nData][nInputs]; // Maximum and minimum of inputs iMaximum = new double[nInputs]; iMinimum = new double[nInputs]; // Maximum and minimum for output data oMaximum = 0; oMinimum = 0; // All values are casted into double/integer nClasses = 0; for (int i = 0; i < X.length; i++) { Instance inst = IS.getInstance(i); for (int j = 0; j < nInputs; j++) { X[i][j] = IS.getInputNumericValue(i, j); missing[i][j] = inst.getInputMissingValues(j); if (X[i][j] > iMaximum[j] || i == 0) { iMaximum[j] = X[i][j]; } if (X[i][j] < iMinimum[j] || i == 0) { iMinimum[j] = X[i][j]; } } } } catch (Exception e) { System.out.println("DBG: Exception in readSet"); e.printStackTrace(); } }
private void normalizarReferencia() throws CheckException { int i, j, cont = 0, k; Instance temp; boolean hecho; double caja[]; StringTokenizer tokens; boolean nulls[]; /*Check if dataset corresponding with a classification problem*/ if (Attributes.getOutputNumAttributes() < 1) { throw new CheckException( "This dataset haven´t outputs, so it not corresponding to a classification problem."); } else if (Attributes.getOutputNumAttributes() > 1) { throw new CheckException("This dataset have more of one output."); } if (Attributes.getOutputAttribute(0).getType() == Attribute.REAL) { throw new CheckException( "This dataset have an input attribute with floating values, so it not corresponding to a classification problem."); } datosReferencia = new double[referencia.getNumInstances()][Attributes.getInputNumAttributes()]; clasesReferencia = new int[referencia.getNumInstances()]; caja = new double[1]; /*Get the number of instances that have a null value*/ for (i = 0; i < referencia.getNumInstances(); i++) { temp = referencia.getInstance(i); nulls = temp.getInputMissingValues(); datosReferencia[i] = referencia.getInstance(i).getAllInputValues(); for (j = 0; j < nulls.length; j++) if (nulls[j]) datosReferencia[i][j] = 0.0; caja = referencia.getInstance(i).getAllOutputValues(); clasesReferencia[i] = (int) caja[0]; for (k = 0; k < datosReferencia[i].length; k++) { if (Attributes.getInputAttribute(k).getType() == Attribute.NOMINAL) { datosReferencia[i][k] /= Attributes.getInputAttribute(k).getNominalValuesList().size() - 1; } else { datosReferencia[i][k] -= Attributes.getInputAttribute(k).getMinAttribute(); datosReferencia[i][k] /= Attributes.getInputAttribute(k).getMaxAttribute() - Attributes.getInputAttribute(k).getMinAttribute(); } } } }
/** * This function builds the data matrix for reference data and normalizes inputs values * * @throws keel.Algorithms.Preprocess.Basic.CheckException Can not be normalized. */ protected void normalizar() throws CheckException { int i, j, k; Instance temp; double caja[]; StringTokenizer tokens; boolean nulls[]; /*Check if dataset corresponding with a classification problem*/ if (Attributes.getOutputNumAttributes() < 1) { throw new CheckException( "This dataset haven?t outputs, so it not corresponding to a classification problem."); } else if (Attributes.getOutputNumAttributes() > 1) { throw new CheckException("This dataset have more of one output."); } if (Attributes.getOutputAttribute(0).getType() == Attribute.REAL) { throw new CheckException( "This dataset have an input attribute with floating values, so it not corresponding to a classification problem."); } entradas = Attributes.getInputAttributes(); salida = Attributes.getOutputAttribute(0); nEntradas = Attributes.getInputNumAttributes(); tokens = new StringTokenizer(training.getHeader(), " \n\r"); tokens.nextToken(); relation = tokens.nextToken(); datosTrain = new double[training.getNumInstances()][Attributes.getInputNumAttributes()]; clasesTrain = new int[training.getNumInstances()]; caja = new double[1]; nulosTrain = new boolean[training.getNumInstances()][Attributes.getInputNumAttributes()]; nominalTrain = new int[training.getNumInstances()][Attributes.getInputNumAttributes()]; realTrain = new double[training.getNumInstances()][Attributes.getInputNumAttributes()]; for (i = 0; i < training.getNumInstances(); i++) { temp = training.getInstance(i); nulls = temp.getInputMissingValues(); datosTrain[i] = training.getInstance(i).getAllInputValues(); for (j = 0; j < nulls.length; j++) if (nulls[j]) { datosTrain[i][j] = 0.0; nulosTrain[i][j] = true; } caja = training.getInstance(i).getAllOutputValues(); clasesTrain[i] = (int) caja[0]; for (k = 0; k < datosTrain[i].length; k++) { if (Attributes.getInputAttribute(k).getType() == Attribute.NOMINAL) { nominalTrain[i][k] = (int) datosTrain[i][k]; datosTrain[i][k] /= Attributes.getInputAttribute(k).getNominalValuesList().size() - 1; } else { realTrain[i][k] = datosTrain[i][k]; datosTrain[i][k] -= Attributes.getInputAttribute(k).getMinAttribute(); datosTrain[i][k] /= Attributes.getInputAttribute(k).getMaxAttribute() - Attributes.getInputAttribute(k).getMinAttribute(); if (Double.isNaN(datosTrain[i][k])) { datosTrain[i][k] = realTrain[i][k]; } } } } datosTest = new double[test.getNumInstances()][Attributes.getInputNumAttributes()]; clasesTest = new int[test.getNumInstances()]; caja = new double[1]; for (i = 0; i < test.getNumInstances(); i++) { temp = test.getInstance(i); nulls = temp.getInputMissingValues(); datosTest[i] = test.getInstance(i).getAllInputValues(); for (j = 0; j < nulls.length; j++) if (nulls[j]) { datosTest[i][j] = 0.0; } caja = test.getInstance(i).getAllOutputValues(); clasesTest[i] = (int) caja[0]; } } // end-method
/** * Process a dataset file for a classification problem. * * @param nfejemplos Name of the dataset file * @param train The dataset file is for training or for test * @throws java.io.IOException if there is any semantical, lexical or sintactical error in the * input file. */ public void processClassifierDataset(String nfejemplos, boolean train) throws IOException { try { // Load in memory a dataset that contains a classification problem IS.readSet(nfejemplos, train); nData = IS.getNumInstances(); nInputs = Attributes.getInputNumAttributes(); nVariables = nInputs + Attributes.getOutputNumAttributes(); // Check that there is only one output variable and // it is nominal if (Attributes.getOutputNumAttributes() > 1) { System.out.println("This algorithm can not process MIMO datasets"); System.out.println("All outputs but the first one will be removed"); } boolean noOutputs = false; if (Attributes.getOutputNumAttributes() < 1) { System.out.println("This algorithm can not process datasets without outputs"); System.out.println("Zero-valued output generated"); noOutputs = true; } // Initialize and fill our own tables X = new double[nData][nInputs]; missing = new boolean[nData][nInputs]; C = new int[nData]; // Maximum and minimum of inputs iMaximum = new double[nInputs]; iMinimum = new double[nInputs]; // Maximum and minimum for output data oMaximum = 0; oMinimum = 0; // All values are casted into double/integer nClasses = 0; for (int i = 0; i < X.length; i++) { Instance inst = IS.getInstance(i); for (int j = 0; j < nInputs; j++) { X[i][j] = IS.getInputNumericValue(i, j); missing[i][j] = inst.getInputMissingValues(j); if (X[i][j] > iMaximum[j] || i == 0) { iMaximum[j] = X[i][j]; } if (X[i][j] < iMinimum[j] || i == 0) { iMinimum[j] = X[i][j]; } } if (noOutputs) { C[i] = 0; } else { C[i] = (int) IS.getOutputNumericValue(i, 0); } if (C[i] > nClasses) { nClasses = C[i]; } } nClasses++; System.out.println("Number of classes=" + nClasses); } catch (Exception e) { System.out.println("DBG: Exception in readSet"); e.printStackTrace(); } }
/** Process the training and test files provided in the parameters file to the constructor. */ public void process() { // declarations double[] outputs; double[] outputs2; Instance neighbor; double dist, mean; int actual; Randomize rnd = new Randomize(); Instance ex; gCenter kmeans = null; int iterations = 0; double E; double prevE; int totalMissing = 0; boolean allMissing = true; rnd.setSeed(semilla); // PROCESS try { // Load in memory a dataset that contains a classification problem IS.readSet(input_train_name, true); int in = 0; int out = 0; ndatos = IS.getNumInstances(); nvariables = Attributes.getNumAttributes(); nentradas = Attributes.getInputNumAttributes(); nsalidas = Attributes.getOutputNumAttributes(); X = new String[ndatos][nvariables]; // matrix with transformed data kmeans = new gCenter(K, ndatos, nvariables); timesSeen = new FreqList[nvariables]; mostCommon = new String[nvariables]; // first, we choose k 'means' randomly from all // instances totalMissing = 0; for (int i = 0; i < ndatos; i++) { Instance inst = IS.getInstance(i); if (inst.existsAnyMissingValue()) totalMissing++; } if (totalMissing == ndatos) allMissing = true; else allMissing = false; for (int numMeans = 0; numMeans < K; numMeans++) { do { actual = (int) (ndatos * rnd.Rand()); ex = IS.getInstance(actual); } while (ex.existsAnyMissingValue() && !allMissing); kmeans.copyCenter(ex, numMeans); } // now, iterate adjusting clusters' centers and // instances to them prevE = 0; iterations = 0; do { for (int i = 0; i < ndatos; i++) { Instance inst = IS.getInstance(i); kmeans.setClusterOf(inst, i); } // set new centers kmeans.recalculateCenters(IS); // compute RMSE E = 0; for (int i = 0; i < ndatos; i++) { Instance inst = IS.getInstance(i); E += kmeans.distance(inst, kmeans.getClusterOf(i)); } iterations++; // System.out.println(iterations+"\t"+E); if (Math.abs(prevE - E) == 0) iterations = maxIter; else prevE = E; } while (E > minError && iterations < maxIter); for (int i = 0; i < ndatos; i++) { Instance inst = IS.getInstance(i); in = 0; out = 0; for (int j = 0; j < nvariables; j++) { Attribute a = Attributes.getAttribute(j); direccion = a.getDirectionAttribute(); tipo = a.getType(); if (direccion == Attribute.INPUT) { if (tipo != Attribute.NOMINAL && !inst.getInputMissingValues(in)) { X[i][j] = new String(String.valueOf(inst.getInputRealValues(in))); } else { if (!inst.getInputMissingValues(in)) X[i][j] = inst.getInputNominalValues(in); else { actual = kmeans.getClusterOf(i); X[i][j] = new String(kmeans.valueAt(actual, j)); } } in++; } else { if (direccion == Attribute.OUTPUT) { if (tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out)) { X[i][j] = new String(String.valueOf(inst.getOutputRealValues(out))); } else { if (!inst.getOutputMissingValues(out)) X[i][j] = inst.getOutputNominalValues(out); else { actual = kmeans.getClusterOf(i); X[i][j] = new String(kmeans.valueAt(actual, j)); } } out++; } } } } } catch (Exception e) { System.out.println("Dataset exception = " + e); e.printStackTrace(); System.exit(-1); } write_results(output_train_name); /** ************************************************************************************ */ // does a test file associated exist? if (input_train_name.compareTo(input_test_name) != 0) { try { // Load in memory a dataset that contains a classification problem IStest.readSet(input_test_name, false); int in = 0; int out = 0; ndatos = IStest.getNumInstances(); nvariables = Attributes.getNumAttributes(); nentradas = Attributes.getInputNumAttributes(); nsalidas = Attributes.getOutputNumAttributes(); for (int i = 0; i < ndatos; i++) { Instance inst = IStest.getInstance(i); in = 0; out = 0; for (int j = 0; j < nvariables; j++) { Attribute a = Attributes.getAttribute(j); direccion = a.getDirectionAttribute(); tipo = a.getType(); if (direccion == Attribute.INPUT) { if (tipo != Attribute.NOMINAL && !inst.getInputMissingValues(in)) { X[i][j] = new String(String.valueOf(inst.getInputRealValues(in))); } else { if (!inst.getInputMissingValues(in)) X[i][j] = inst.getInputNominalValues(in); else { actual = kmeans.getClusterOf(i); X[i][j] = new String(kmeans.valueAt(actual, j)); } } in++; } else { if (direccion == Attribute.OUTPUT) { if (tipo != Attribute.NOMINAL && !inst.getOutputMissingValues(out)) { X[i][j] = new String(String.valueOf(inst.getOutputRealValues(out))); } else { if (!inst.getOutputMissingValues(out)) X[i][j] = inst.getOutputNominalValues(out); else { actual = kmeans.getClusterOf(i); X[i][j] = new String(kmeans.valueAt(actual, j)); } } out++; } } } } } catch (Exception e) { System.out.println("Dataset exception = " + e); e.printStackTrace(); System.exit(-1); } write_results(output_test_name); } }