public static void main(String[] args) { SparkConf conf = new SparkConf() .setMaster("local[4]") .setAppName("SparkStreamingPullDataFromFlume for Java"); JavaStreamingContext jsc = new JavaStreamingContext(conf, Durations.seconds(30)); // JavaReceiverInputDStream<SparkFlumeEvent> lines = FlumeUtils.createStream(jsc,"master1", // 9999); flume push data to Spark Streaming JavaReceiverInputDStream<SparkFlumeEvent> lines = FlumeUtils.createPollingStream( jsc, "master1", 9999); // Spark Streaming pull data from flume JavaDStream<String> words = lines.flatMap( new FlatMapFunction<SparkFlumeEvent, String>() { private static final long serialVersionUID = 1L; @Override public Iterable<String> call(SparkFlumeEvent event) throws Exception { String line = new String(event.event().getBody().array()); return Arrays.asList(line.split(" ")); } }); JavaPairDStream<String, Integer> pairs = words.mapToPair( new PairFunction<String, String, Integer>() { private static final long serialVersionUID = 1L; @Override public Tuple2<String, Integer> call(String word) throws Exception { return new Tuple2<String, Integer>(word, 1); } }); JavaPairDStream<String, Integer> wordsCount = pairs.reduceByKey( new Function2< Integer, Integer, Integer>() { // 对相同的Key,进行Value的累计(包括Local和Reducer级别同时Reduce) private static final long serialVersionUID = 1L; @Override public Integer call(Integer v1, Integer v2) throws Exception { return v1 + v2; } }); wordsCount.print(); jsc.start(); jsc.awaitTermination(); jsc.close(); }
public static void main(String[] args) throws Exception { if (args.length < 1) { System.err.println("Usage: JavaQueueStream <master>"); System.exit(1); } StreamingExamples.setStreamingLogLevels(); // Create the context JavaStreamingContext ssc = new JavaStreamingContext( args[0], "QueueStream", new Duration(1000), System.getenv("SPARK_HOME"), JavaStreamingContext.jarOfClass(JavaQueueStream.class)); // Create the queue through which RDDs can be pushed to // a QueueInputDStream Queue<JavaRDD<Integer>> rddQueue = new LinkedList<JavaRDD<Integer>>(); // Create and push some RDDs into the queue List<Integer> list = Lists.newArrayList(); for (int i = 0; i < 1000; i++) { list.add(i); } for (int i = 0; i < 30; i++) { rddQueue.add(ssc.sparkContext().parallelize(list)); } // Create the QueueInputDStream and use it do some processing JavaDStream<Integer> inputStream = ssc.queueStream(rddQueue); JavaPairDStream<Integer, Integer> mappedStream = inputStream.mapToPair( new PairFunction<Integer, Integer, Integer>() { @Override public Tuple2<Integer, Integer> call(Integer i) { return new Tuple2<Integer, Integer>(i % 10, 1); } }); JavaPairDStream<Integer, Integer> reducedStream = mappedStream.reduceByKey( new Function2<Integer, Integer, Integer>() { @Override public Integer call(Integer i1, Integer i2) { return i1 + i2; } }); reducedStream.print(); ssc.start(); ssc.awaitTermination(); }
public static void main(String[] args) { String master = System.getenv("MASTER"); if (master == null) { master = "local[2]"; } SparkConf conf = new SparkConf().setAppName("Voter Application").setMaster(master); Logger.getLogger("org").setLevel(Level.ERROR); Logger.getLogger("akka").setLevel(Level.ERROR); final Long batch_duration = Long.valueOf(args[0]); JavaStreamingContext jssc = new JavaStreamingContext(conf, new Duration(Integer.valueOf(args[0]))); jssc.checkpoint("."); JavaReceiverInputDStream<String> votes = jssc.receiverStream(new Voter("localhost", 6789)); // transform text line stream to PhoneCall stream JavaDStream<PhoneCall> phoneCalls = votes.map( new Function<String, PhoneCall>() { public PhoneCall call(String s) { return getPhoneCall(s); } }); JavaDStream<Long> counts = votes.count(); counts.print(); // create updateFunction which is used to update the total call count for each phone number Function2<List<Integer>, Optional<Integer>, Optional<Integer>> updateFunction = new Function2<List<Integer>, Optional<Integer>, Optional<Integer>>() { public Optional<Integer> call(List<Integer> values, Optional<Integer> state) { // add the new values with the previous running count to get the // new count Integer sum = 0; for (Integer i : values) { sum += i; } Integer newSum = sum + state.or(0); return Optional.of(newSum); } }; // JavaPairDStream<Long, Integer> calls = phoneCalls.mapToPair( new PairFunction<PhoneCall, Long, Integer>() { public Tuple2<Long, Integer> call(PhoneCall x) { return new Tuple2<Long, Integer>(x.phoneNumber, 1); } }); // generate the accumulated count for phone numbers final JavaPairDStream<Long, Integer> callNumberCounts = calls.updateStateByKey(updateFunction); // callNumberCounts.print(); JavaPairDStream<Long, PhoneCall> pairVotes = phoneCalls.mapToPair( new PairFunction<PhoneCall, Long, PhoneCall>() { public Tuple2<Long, PhoneCall> call(PhoneCall call) throws Exception { return new Tuple2<Long, PhoneCall>(call.voteId, call); } }); // generate the validate phone numbers, which is still allowed to send vote JavaPairDStream<Long, Integer> allowedCalls = callNumberCounts.filter( new Function<Tuple2<Long, Integer>, Boolean>() { public Boolean call(Tuple2<Long, Integer> v1) throws Exception { if (v1._2() > Voter.MAX_VOTES) return false; return true; } }); // allowedCalls.print(); // get validate contestant phone calls JavaDStream<PhoneCall> validContestantPhoneCalls = phoneCalls.filter( new Function<PhoneCall, Boolean>() { public Boolean call(PhoneCall call) { if (call.contestantNumber > Voter.NUM_CONTESTANTS) return false; return true; } }); JavaPairDStream<Long, PhoneCall> anotherTemporyPhoneCalls = validContestantPhoneCalls.mapToPair( new PairFunction<PhoneCall, Long, PhoneCall>() { public Tuple2<Long, PhoneCall> call(PhoneCall x) { return new Tuple2<Long, PhoneCall>(x.phoneNumber, x); } }); // get validate phone call records JavaPairDStream<Long, Tuple2<PhoneCall, Integer>> validatePhoneCalls = anotherTemporyPhoneCalls.join(allowedCalls); // validatePhoneCalls.print(); JavaDStream<PhoneCall> validateCalls = validatePhoneCalls.transform( new Function<JavaPairRDD<Long, Tuple2<PhoneCall, Integer>>, JavaRDD<PhoneCall>>() { public JavaRDD<PhoneCall> call(JavaPairRDD<Long, Tuple2<PhoneCall, Integer>> v1) throws Exception { JavaRDD<PhoneCall> item = v1.map( new Function<Tuple2<Long, Tuple2<PhoneCall, Integer>>, PhoneCall>() { public PhoneCall call(Tuple2<Long, Tuple2<PhoneCall, Integer>> validItem) throws Exception { return validItem._2()._1(); } }); return item; } }); // validateCalls.print(); // save all votes with redis validateCalls.foreachRDD( new Function<JavaRDD<PhoneCall>, Void>() { public Void call(JavaRDD<PhoneCall> rdd) throws Exception { rdd.foreach( new VoidFunction<PhoneCall>() { public void call(PhoneCall call) throws Exception { // System.out.println(call.toString()); String key = String.valueOf(call.voteId); String value = call.getContent(); // save <key,value> using redis JedisPool pool = new JedisPool(new JedisPoolConfig(), "localhost"); Jedis jedis = pool.getResource(); try { jedis.set(key, value); } finally { if (null != jedis) { jedis.close(); } } /// ... when closing your application: pool.destroy(); } }); return null; } }); // validate calls JavaPairDStream<Integer, Integer> contestantVotes = validateCalls.mapToPair( new PairFunction<PhoneCall, Integer, Integer>() { public Tuple2<Integer, Integer> call(PhoneCall x) { return new Tuple2<Integer, Integer>(x.contestantNumber, 1); } }); // use window to get generate leaderboard Integer size = Integer.valueOf(args[1]); Integer slide = Integer.valueOf(args[2]); JavaDStream<PhoneCall> windowCalls = validateCalls.window(new Duration(size), new Duration(slide)); // windowCalls.print(); // generate window contestant count JavaPairDStream<Integer, Integer> windowContestantNums = windowCalls.mapToPair( new PairFunction<PhoneCall, Integer, Integer>() { public Tuple2<Integer, Integer> call(PhoneCall x) { return new Tuple2<Integer, Integer>(x.contestantNumber, 1); } }); JavaPairDStream<Integer, Integer> windContestantCounts = windowContestantNums.reduceByKey( new Function2<Integer, Integer, Integer>() { public Integer call(Integer i1, Integer i2) throws Exception { return i1 + i2; } }); windContestantCounts.print(); // generate the accumulated count for contestants JavaPairDStream<Integer, Integer> totalContestantCounts = contestantVotes.updateStateByKey(updateFunction); // used for sorting PairFunction<Tuple2<Integer, Integer>, Integer, Integer> swapFunction = new PairFunction<Tuple2<Integer, Integer>, Integer, Integer>() { public Tuple2<Integer, Integer> call(Tuple2<Integer, Integer> in) { return in.swap(); } }; JavaPairDStream<Integer, Integer> swappedTotalContestantCounts = totalContestantCounts.mapToPair(swapFunction); JavaPairDStream<Integer, Integer> sortedTotalContestantCounts = swappedTotalContestantCounts.transformToPair( new Function<JavaPairRDD<Integer, Integer>, JavaPairRDD<Integer, Integer>>() { public JavaPairRDD<Integer, Integer> call(JavaPairRDD<Integer, Integer> in) throws Exception { return in.sortByKey(false); } }); sortedTotalContestantCounts.print(); // make some statistics phoneCalls.foreachRDD( new Function<JavaRDD<PhoneCall>, Void>() { public Void call(JavaRDD<PhoneCall> rdd) throws Exception { Long count = rdd.count(); // System.out.println( "count : " + count ); Double throughput = (count.doubleValue() * 1000 / batch_duration.doubleValue()); System.out.println("Current rate = " + throughput + " records / second"); XMemcachedClientBuilder builder = new XMemcachedClientBuilder(AddrUtil.getAddresses("localhost:11211")); XMemcachedClient client = (XMemcachedClient) builder.build(); client.setPrimitiveAsString(true); Long currentTimeStamp = System.currentTimeMillis(); // System.out.println("End time: " + currentTimeStamp); client.add(currentTimeStamp.toString(), 0, throughput); return null; } }); jssc.start(); // Start the computation jssc.awaitTermination(); // Wait for the computation to terminate }