@Test public void testRandomGrouping() throws Exception { try { int indexIter = 50 * RANDOM_MULTIPLIER; // make >0 to enable test int queryIter = 100 * RANDOM_MULTIPLIER; while (--indexIter >= 0) { int indexSize = random.nextInt(25 * RANDOM_MULTIPLIER); List<FldType> types = new ArrayList<FldType>(); types.add(new FldType("id", ONE_ONE, new SVal('A', 'Z', 4, 4))); types.add( new FldType("score_s1", ONE_ONE, new SVal('a', 'c', 1, 1))); // field used to score types.add(new FldType("bar_s1", ONE_ONE, new SVal('a', 'z', 3, 5))); types.add(new FldType(FOO_STRING_FIELD, ONE_ONE, new SVal('a', 'z', 1, 2))); types.add( new FldType( SMALL_STRING_FIELD, ZERO_ONE, new SVal('a', (char) ('c' + indexSize / 10), 1, 1))); clearIndex(); Map<Comparable, Doc> model = indexDocs(types, null, indexSize); // test with specific docs if (false) { clearIndex(); model.clear(); Doc d1 = createDoc(types); d1.getValues(SMALL_STRING_FIELD).set(0, "c"); d1.getValues(SMALL_INT_FIELD).set(0, 5); d1.order = 0; updateJ(toJSON(d1), params("commit", "true")); model.put(d1.id, d1); d1 = createDoc(types); d1.getValues(SMALL_STRING_FIELD).set(0, "b"); d1.getValues(SMALL_INT_FIELD).set(0, 5); d1.order = 1; updateJ(toJSON(d1), params("commit", "false")); model.put(d1.id, d1); d1 = createDoc(types); d1.getValues(SMALL_STRING_FIELD).set(0, "c"); d1.getValues(SMALL_INT_FIELD).set(0, 5); d1.order = 2; updateJ(toJSON(d1), params("commit", "false")); model.put(d1.id, d1); d1 = createDoc(types); d1.getValues(SMALL_STRING_FIELD).set(0, "c"); d1.getValues(SMALL_INT_FIELD).set(0, 5); d1.order = 3; updateJ(toJSON(d1), params("commit", "false")); model.put(d1.id, d1); d1 = createDoc(types); d1.getValues(SMALL_STRING_FIELD).set(0, "b"); d1.getValues(SMALL_INT_FIELD).set(0, 2); d1.order = 4; updateJ(toJSON(d1), params("commit", "true")); model.put(d1.id, d1); } for (int qiter = 0; qiter < queryIter; qiter++) { String groupField = types.get(random.nextInt(types.size())).fname; int rows = random.nextInt(10) == 0 ? random.nextInt(model.size() + 2) : random.nextInt(11) - 1; int start = random.nextInt(5) == 0 ? random.nextInt(model.size() + 2) : random.nextInt(5); // pick a small start normally for better coverage int group_limit = random.nextInt(10) == 0 ? random.nextInt(model.size() + 2) : random.nextInt(11) - 1; int group_offset = random.nextInt(10) == 0 ? random.nextInt(model.size() + 2) : random.nextInt(2); // pick a small start normally for better coverage String[] stringSortA = new String[1]; Comparator<Doc> sortComparator = createSort(h.getCore().getSchema(), types, stringSortA); String sortStr = stringSortA[0]; Comparator<Doc> groupComparator = random.nextBoolean() ? sortComparator : createSort(h.getCore().getSchema(), types, stringSortA); String groupSortStr = stringSortA[0]; // since groupSortStr defaults to sortStr, we need to normalize null to "score desc" if // sortStr != null. if (groupSortStr == null && groupSortStr != sortStr) { groupSortStr = "score desc"; } // Test specific case if (false) { groupField = SMALL_INT_FIELD; sortComparator = createComparator( Arrays.asList(createComparator(SMALL_STRING_FIELD, true, true, false, true))); sortStr = SMALL_STRING_FIELD + " asc"; groupComparator = createComparator( Arrays.asList(createComparator(SMALL_STRING_FIELD, true, true, false, false))); groupSortStr = SMALL_STRING_FIELD + " asc"; rows = 1; start = 0; group_offset = 1; group_limit = 1; } Map<Comparable, Grp> groups = groupBy(model.values(), groupField); // first sort the docs in each group for (Grp grp : groups.values()) { Collections.sort(grp.docs, groupComparator); } // now sort the groups // if sort != group.sort, we need to find the max doc by "sort" if (groupComparator != sortComparator) { for (Grp grp : groups.values()) grp.setMaxDoc(sortComparator); } List<Grp> sortedGroups = new ArrayList<Grp>(groups.values()); Collections.sort( sortedGroups, groupComparator == sortComparator ? createFirstDocComparator(sortComparator) : createMaxDocComparator(sortComparator)); boolean includeNGroups = random.nextBoolean(); Object modelResponse = buildGroupedResult( h.getCore().getSchema(), sortedGroups, start, rows, group_offset, group_limit, includeNGroups); boolean truncateGroups = random.nextBoolean(); Map<String, Integer> facetCounts = new TreeMap<String, Integer>(); if (truncateGroups) { for (Grp grp : sortedGroups) { Doc doc = grp.docs.get(0); if (doc.getValues(FOO_STRING_FIELD) == null) { continue; } String key = doc.getFirstValue(FOO_STRING_FIELD).toString(); boolean exists = facetCounts.containsKey(key); int count = exists ? facetCounts.get(key) : 0; facetCounts.put(key, ++count); } } else { for (Doc doc : model.values()) { if (doc.getValues(FOO_STRING_FIELD) == null) { continue; } for (Comparable field : doc.getValues(FOO_STRING_FIELD)) { String key = field.toString(); boolean exists = facetCounts.containsKey(key); int count = exists ? facetCounts.get(key) : 0; facetCounts.put(key, ++count); } } } List<Comparable> expectedFacetResponse = new ArrayList<Comparable>(); for (Map.Entry<String, Integer> stringIntegerEntry : facetCounts.entrySet()) { expectedFacetResponse.add(stringIntegerEntry.getKey()); expectedFacetResponse.add(stringIntegerEntry.getValue()); } int randomPercentage = random.nextInt(101); // TODO: create a random filter too SolrQueryRequest req = req( "group", "true", "wt", "json", "indent", "true", "echoParams", "all", "q", "{!func}score_f", "group.field", groupField, sortStr == null ? "nosort" : "sort", sortStr == null ? "" : sortStr, (groupSortStr == null || groupSortStr == sortStr) ? "noGroupsort" : "group.sort", groupSortStr == null ? "" : groupSortStr, "rows", "" + rows, "start", "" + start, "group.offset", "" + group_offset, "group.limit", "" + group_limit, GroupParams.GROUP_CACHE_PERCENTAGE, Integer.toString(randomPercentage), GroupParams.GROUP_TOTAL_COUNT, includeNGroups ? "true" : "false", "facet", "true", "facet.sort", "index", "facet.limit", "-1", "facet.field", FOO_STRING_FIELD, GroupParams.GROUP_TRUNCATE, truncateGroups ? "true" : "false", "facet.mincount", "1"); String strResponse = h.query(req); Object realResponse = ObjectBuilder.fromJSON(strResponse); String err = JSONTestUtil.matchObj("/grouped/" + groupField, realResponse, modelResponse); if (err != null) { log.error( "GROUPING MISMATCH: " + err + "\n\trequest=" + req + "\n\tresult=" + strResponse + "\n\texpected=" + JSONUtil.toJSON(modelResponse) + "\n\tsorted_model=" + sortedGroups); // re-execute the request... good for putting a breakpoint here for debugging String rsp = h.query(req); fail(err); } // assert post / pre grouping facets err = JSONTestUtil.matchObj( "/facet_counts/facet_fields/" + FOO_STRING_FIELD, realResponse, expectedFacetResponse); if (err != null) { log.error( "GROUPING MISMATCH: " + err + "\n\trequest=" + req + "\n\tresult=" + strResponse + "\n\texpected=" + JSONUtil.toJSON(expectedFacetResponse)); // re-execute the request... good for putting a breakpoint here for debugging h.query(req); fail(err); } } // end query iter } // end index iter } finally { // B/c the facet.field is also used of grouping we have the purge the FC to avoid FC insanity FieldCache.DEFAULT.purgeAllCaches(); } }
@Override public String toString() { return name + ':' + JSONUtil.toJSON(propMap); }