@Override public int run(String[] args) throws Exception { addInputOption(); addOutputOption(); addOption(DefaultOptionCreator.distanceMeasureOption().create()); addOption(DefaultOptionCreator.t1Option().create()); addOption(DefaultOptionCreator.t2Option().create()); addOption(DefaultOptionCreator.overwriteOption().create()); Map<String, List<String>> argMap = parseArguments(args); if (argMap == null) { return -1; } Path input = getInputPath(); Path output = getOutputPath(); if (hasOption(DefaultOptionCreator.OVERWRITE_OPTION)) { HadoopUtil.delete(new Configuration(), output); } String measureClass = getOption(DefaultOptionCreator.DISTANCE_MEASURE_OPTION); double t1 = Double.parseDouble(getOption(DefaultOptionCreator.T1_OPTION)); double t2 = Double.parseDouble(getOption(DefaultOptionCreator.T2_OPTION)); DistanceMeasure measure = ClassUtils.instantiateAs(measureClass, DistanceMeasure.class); run(input, output, measure, t1, t2); return 0; }
@Override public int run(String[] args) throws IOException, ClassNotFoundException, InterruptedException { addInputOption(); addOutputOption(); addOption(MinhashOptionCreator.minClusterSizeOption().create()); addOption(MinhashOptionCreator.minVectorSizeOption().create()); addOption(MinhashOptionCreator.hashTypeOption().create()); addOption(MinhashOptionCreator.numHashFunctionsOption().create()); addOption(MinhashOptionCreator.keyGroupsOption().create()); addOption(MinhashOptionCreator.numReducersOption().create()); addOption(MinhashOptionCreator.debugOutputOption().create()); addOption(DefaultOptionCreator.overwriteOption().create()); if (parseArguments(args) == null) { return -1; } Path input = getInputPath(); Path output = getOutputPath(); if (hasOption(DefaultOptionCreator.OVERWRITE_OPTION)) { HadoopUtil.delete(getConf(), output); } int minClusterSize = Integer.valueOf(getOption(MinhashOptionCreator.MIN_CLUSTER_SIZE)); int minVectorSize = Integer.valueOf(getOption(MinhashOptionCreator.MIN_VECTOR_SIZE)); String hashType = getOption(MinhashOptionCreator.HASH_TYPE); int numHashFunctions = Integer.valueOf(getOption(MinhashOptionCreator.NUM_HASH_FUNCTIONS)); int keyGroups = Integer.valueOf(getOption(MinhashOptionCreator.KEY_GROUPS)); int numReduceTasks = Integer.parseInt(getOption(MinhashOptionCreator.NUM_REDUCERS)); boolean debugOutput = hasOption(MinhashOptionCreator.DEBUG_OUTPUT); runJob( input, output, minClusterSize, minVectorSize, hashType, numHashFunctions, keyGroups, numReduceTasks, debugOutput); return 0; }
@Override public int run(String[] args) throws Exception { String path = System.getProperty("user.dir"); addInputOption(); addOutputOption(); addOption(ALPHA_I, "a", "smoothing parameter", String.valueOf(1.0f)); addOption( buildOption( TRAIN_COMPLEMENTARY, "c", "train complementary?", false, false, String.valueOf(false))); addOption(LABEL_INDEX, "li", "The path to store the label index in", false); addOption(DefaultOptionCreator.overwriteOption().create()); Path labPath = new Path(path + "/../out/labelindex/"); long labelSize = createLabelIndex(labPath); float alphaI = 1.0F; boolean trainComplementary = true; HadoopUtil.setSerializations(getConf()); HadoopUtil.cacheFiles(labPath, getConf()); HadoopUtil.delete(getConf(), new Path("/tmp/summedObservations")); HadoopUtil.delete(getConf(), new Path("/tmp/weights")); HadoopUtil.delete(getConf(), new Path("/tmp/thetas")); // Add up all the vectors with the same labels, while mapping the labels into our index Job indexInstances = prepareJob( new Path(path + "/../out/training"), new Path("/tmp/summedObservations"), SequenceFileInputFormat.class, IndexInstancesMapper.class, IntWritable.class, VectorWritable.class, VectorSumReducer.class, IntWritable.class, VectorWritable.class, SequenceFileOutputFormat.class); indexInstances.setCombinerClass(VectorSumReducer.class); boolean succeeded = indexInstances.waitForCompletion(true); if (!succeeded) { return -1; } // Sum up all the weights from the previous step, per label and per feature Job weightSummer = prepareJob( new Path("/tmp/summedObservations"), new Path("/tmp/weights"), SequenceFileInputFormat.class, WeightsMapper.class, Text.class, VectorWritable.class, VectorSumReducer.class, Text.class, VectorWritable.class, SequenceFileOutputFormat.class); weightSummer.getConfiguration().set(WeightsMapper.NUM_LABELS, String.valueOf(labelSize)); weightSummer.setCombinerClass(VectorSumReducer.class); succeeded = weightSummer.waitForCompletion(true); if (!succeeded) { return -1; } // Put the per label and per feature vectors into the cache HadoopUtil.cacheFiles(new Path("/tmp/weights"), getConf()); if (trainComplementary) { // Calculate the per label theta normalizers, write out to LABEL_THETA_NORMALIZER vector // see http://people.csail.mit.edu/jrennie/papers/icml03-nb.pdf - Section 3.2, Weight // Magnitude Errors Job thetaSummer = prepareJob( new Path("/tmp/summedObservations"), new Path("/tmp/thetas"), SequenceFileInputFormat.class, ThetaMapper.class, Text.class, VectorWritable.class, VectorSumReducer.class, Text.class, VectorWritable.class, SequenceFileOutputFormat.class); thetaSummer.setCombinerClass(VectorSumReducer.class); thetaSummer.getConfiguration().setFloat(ThetaMapper.ALPHA_I, alphaI); thetaSummer .getConfiguration() .setBoolean(ThetaMapper.TRAIN_COMPLEMENTARY, trainComplementary); succeeded = thetaSummer.waitForCompletion(true); if (!succeeded) { return -1; } } // Put the per label theta normalizers into the cache HadoopUtil.cacheFiles(new Path("/tmp/thetas"), getConf()); // Validate our model and then write it out to the official output getConf().setFloat(ThetaMapper.ALPHA_I, alphaI); getConf().setBoolean(NaiveBayesModel.COMPLEMENTARY_MODEL, trainComplementary); NaiveBayesModel naiveBayesModel = BayesUtils.readModelFromDir(new Path("/tmp/"), getConf()); naiveBayesModel.validate(); naiveBayesModel.serialize(new Path(path + "/../out/model"), getConf()); return 0; }
@Override public int run(String[] args) throws Exception { addInputOption(); addOutputOption(); addOption("numberOfColumns", "r", "Number of columns in the input matrix", false); addOption( "similarityClassname", "s", "Name of distributed similarity class to instantiate, alternatively use " + "one of the predefined similarities (" + VectorSimilarityMeasures.list() + ')'); addOption( "maxSimilaritiesPerRow", "m", "Number of maximum similarities per row (default: " + DEFAULT_MAX_SIMILARITIES_PER_ROW + ')', String.valueOf(DEFAULT_MAX_SIMILARITIES_PER_ROW)); addOption( "excludeSelfSimilarity", "ess", "compute similarity of rows to themselves?", String.valueOf(false)); addOption("threshold", "tr", "discard row pairs with a similarity value below this", false); addOption(DefaultOptionCreator.overwriteOption().create()); Map<String, List<String>> parsedArgs = parseArguments(args); if (parsedArgs == null) { return -1; } int numberOfColumns; if (hasOption("numberOfColumns")) { // Number of columns explicitly specified via CLI numberOfColumns = Integer.parseInt(getOption("numberOfColumns")); } else { // else get the number of columns by determining the cardinality of a vector in the input // matrix numberOfColumns = getDimensions(getInputPath()); } String similarityClassnameArg = getOption("similarityClassname"); String similarityClassname; try { similarityClassname = VectorSimilarityMeasures.valueOf(similarityClassnameArg).getClassname(); } catch (IllegalArgumentException iae) { similarityClassname = similarityClassnameArg; } // Clear the output and temp paths if the overwrite option has been set if (hasOption(DefaultOptionCreator.OVERWRITE_OPTION)) { // Clear the temp path HadoopUtil.delete(getConf(), getTempPath()); // Clear the output path HadoopUtil.delete(getConf(), getOutputPath()); } int maxSimilaritiesPerRow = Integer.parseInt(getOption("maxSimilaritiesPerRow")); boolean excludeSelfSimilarity = Boolean.parseBoolean(getOption("excludeSelfSimilarity")); double threshold = hasOption("threshold") ? Double.parseDouble(getOption("threshold")) : NO_THRESHOLD; Path weightsPath = getTempPath("weights"); Path normsPath = getTempPath("norms.bin"); Path numNonZeroEntriesPath = getTempPath("numNonZeroEntries.bin"); Path maxValuesPath = getTempPath("maxValues.bin"); Path pairwiseSimilarityPath = getTempPath("pairwiseSimilarity"); AtomicInteger currentPhase = new AtomicInteger(); if (shouldRunNextPhase(parsedArgs, currentPhase)) { Job normsAndTranspose = prepareJob( getInputPath(), weightsPath, VectorNormMapper.class, IntWritable.class, VectorWritable.class, MergeVectorsReducer.class, IntWritable.class, VectorWritable.class); normsAndTranspose.setCombinerClass(MergeVectorsCombiner.class); Configuration normsAndTransposeConf = normsAndTranspose.getConfiguration(); normsAndTransposeConf.set(THRESHOLD, String.valueOf(threshold)); normsAndTransposeConf.set(NORMS_PATH, normsPath.toString()); normsAndTransposeConf.set(NUM_NON_ZERO_ENTRIES_PATH, numNonZeroEntriesPath.toString()); normsAndTransposeConf.set(MAXVALUES_PATH, maxValuesPath.toString()); normsAndTransposeConf.set(SIMILARITY_CLASSNAME, similarityClassname); boolean succeeded = normsAndTranspose.waitForCompletion(true); if (!succeeded) { return -1; } } if (shouldRunNextPhase(parsedArgs, currentPhase)) { Job pairwiseSimilarity = prepareJob( weightsPath, pairwiseSimilarityPath, CooccurrencesMapper.class, IntWritable.class, VectorWritable.class, SimilarityReducer.class, IntWritable.class, VectorWritable.class); pairwiseSimilarity.setCombinerClass(VectorSumReducer.class); Configuration pairwiseConf = pairwiseSimilarity.getConfiguration(); pairwiseConf.set(THRESHOLD, String.valueOf(threshold)); pairwiseConf.set(NORMS_PATH, normsPath.toString()); pairwiseConf.set(NUM_NON_ZERO_ENTRIES_PATH, numNonZeroEntriesPath.toString()); pairwiseConf.set(MAXVALUES_PATH, maxValuesPath.toString()); pairwiseConf.set(SIMILARITY_CLASSNAME, similarityClassname); pairwiseConf.setInt(NUMBER_OF_COLUMNS, numberOfColumns); pairwiseConf.setBoolean(EXCLUDE_SELF_SIMILARITY, excludeSelfSimilarity); boolean succeeded = pairwiseSimilarity.waitForCompletion(true); if (!succeeded) { return -1; } } if (shouldRunNextPhase(parsedArgs, currentPhase)) { Job asMatrix = prepareJob( pairwiseSimilarityPath, getOutputPath(), UnsymmetrifyMapper.class, IntWritable.class, VectorWritable.class, MergeToTopKSimilaritiesReducer.class, IntWritable.class, VectorWritable.class); asMatrix.setCombinerClass(MergeToTopKSimilaritiesReducer.class); asMatrix.getConfiguration().setInt(MAX_SIMILARITIES_PER_ROW, maxSimilaritiesPerRow); boolean succeeded = asMatrix.waitForCompletion(true); if (!succeeded) { return -1; } } return 0; }