@Override protected void setup(Context context) throws IOException, InterruptedException { super.setup(context); minSupport = context .getConfiguration() .getInt(DictionaryVectorizer.MIN_SUPPORT, DictionaryVectorizer.DEFAULT_MIN_SUPPORT); parseWeibo = context.getConfiguration().getBoolean(DictionaryVectorizer.PARSE_WEIBO, false); }
/** * Test connecting three clients to one server. * * @throws IOException */ @Test public void connectThreeClientsToOneServer() throws IOException { @SuppressWarnings("rawtypes") Context context = mock(Context.class); when(context.getConfiguration()).thenReturn(conf); ServerData<IntWritable, IntWritable, IntWritable, IntWritable> serverData = MockUtils.createNewServerData(conf, context); WorkerInfo workerInfo = new WorkerInfo(); NettyServer server = new NettyServer( conf, new WorkerRequestServerHandler.Factory(serverData), workerInfo, context); server.start(); workerInfo.setInetSocketAddress(server.getMyAddress()); List<WorkerInfo> addresses = Lists.<WorkerInfo>newArrayList(workerInfo); NettyClient client1 = new NettyClient(context, conf, new WorkerInfo()); client1.connectAllAddresses(addresses); NettyClient client2 = new NettyClient(context, conf, new WorkerInfo()); client2.connectAllAddresses(addresses); NettyClient client3 = new NettyClient(context, conf, new WorkerInfo()); client3.connectAllAddresses(addresses); client1.stop(); client2.stop(); client3.stop(); server.stop(); }
/* (non-Javadoc) * @see org.apache.hadoop.mapreduce.Mapper#setup(org.apache.hadoop.mapreduce.Mapper.Context) */ protected void setup(Context context) throws IOException, InterruptedException { Configuration config = context.getConfiguration(); fieldDelimRegex = config.get("field.delim.regex", ","); isValidationMode = config.getBoolean("validation.mode", true); classCondtionWeighted = config.getBoolean("class.condition.weighted", false); String predictionMode = config.get("prediction.mode", "classification"); String regressionMethod = config.get("regression.method", "average"); isLinearRegression = predictionMode.equals("regression") && regressionMethod.equals("linearRegression"); }
@Override public void map(Object key, Text value, Context context) throws IOException, InterruptedException { Configuration conf = context.getConfiguration(); String keywords = conf.get("keyword"); // System.out.println(keywords); String line = value.toString(); String[] terms = line.split("\t"); // terms[0] is required keyword String[] multiKeywords = keywords.split(" "); boolean foundflag = false; for (int i = 0; i < multiKeywords.length; ++i) { if (multiKeywords[i].equals(terms[0])) { foundflag = true; } } if (foundflag) { context.write(new Text("Keywords"), new Text(terms[0] + "@" + terms[1].toString())); } }
/** * Test connecting one client to three servers. * * @throws IOException */ @Test public void connectOneClientToThreeServers() throws IOException { @SuppressWarnings("rawtypes") Context context = mock(Context.class); when(context.getConfiguration()).thenReturn(conf); ServerData<IntWritable, IntWritable, IntWritable, IntWritable> serverData = MockUtils.createNewServerData(conf, context); RequestServerHandler.Factory requestServerHandlerFactory = new WorkerRequestServerHandler.Factory(serverData); WorkerInfo workerInfo1 = new WorkerInfo(); workerInfo1.setTaskId(1); NettyServer server1 = new NettyServer(conf, requestServerHandlerFactory, workerInfo1, context); server1.start(); workerInfo1.setInetSocketAddress(server1.getMyAddress()); WorkerInfo workerInfo2 = new WorkerInfo(); workerInfo1.setTaskId(2); NettyServer server2 = new NettyServer(conf, requestServerHandlerFactory, workerInfo2, context); server2.start(); workerInfo2.setInetSocketAddress(server2.getMyAddress()); WorkerInfo workerInfo3 = new WorkerInfo(); workerInfo1.setTaskId(3); NettyServer server3 = new NettyServer(conf, requestServerHandlerFactory, workerInfo3, context); server3.start(); workerInfo3.setInetSocketAddress(server3.getMyAddress()); NettyClient client = new NettyClient(context, conf, new WorkerInfo()); List<WorkerInfo> addresses = Lists.<WorkerInfo>newArrayList(workerInfo1, workerInfo2, workerInfo3); client.connectAllAddresses(addresses); client.stop(); server1.stop(); server2.stop(); server3.stop(); }
public void map(Object key, Text value, Context context) throws IOException, InterruptedException { Configuration conf = context.getConfiguration(); FileSplit split = (FileSplit) context.getInputSplit(); String rootFolder = split.getPath().getParent().toString(); String uri = rootFolder + "/" + value.toString(); // C:/hadoopsample/input/images+"/"+image1.jpg"; FileSystem fs = FileSystem.get(URI.create(uri), conf); FSDataInputStream in = null; try { in = fs.open(new Path(uri)); java.io.ByteArrayOutputStream bout = new ByteArrayOutputStream(); byte buffer[] = new byte[1024 * 1024]; while (in.read(buffer, 0, buffer.length) >= 0) { bout.write(buffer); } context.write(value, new BytesWritable(bout.toByteArray())); } finally { IOUtils.closeStream(in); } }
@Override protected void setup(Context context) throws IOException, InterruptedException { Configuration conf = context.getConfiguration(); this.N = conf.getInt("N", 10); }
/* (non-Javadoc) * @see org.apache.hadoop.mapreduce.Reducer#setup(org.apache.hadoop.mapreduce.Reducer.Context) */ protected void setup(Context context) throws IOException, InterruptedException { Configuration config = context.getConfiguration(); if (config.getBoolean("debug.on", false)) { LOG.setLevel(Level.DEBUG); System.out.println("in debug mode"); } fieldDelim = config.get("field.delim", ","); topMatchCount = config.getInt("top.match.count", 10); isValidationMode = config.getBoolean("validation.mode", true); kernelFunction = config.get("kernel.function", "none"); kernelParam = config.getInt("kernel.param", -1); classCondtionWeighted = config.getBoolean("class.condtion.weighted", false); neighborhood = new Neighborhood(kernelFunction, kernelParam, classCondtionWeighted); outputClassDistr = config.getBoolean("output.class.distr", false); inverseDistanceWeighted = config.getBoolean("inverse.distance.weighted", false); // regression String predictionMode = config.get("prediction.mode", "classification"); if (predictionMode.equals("regression")) { neighborhood.withPredictionMode(PredictionMode.Regression); String regressionMethod = config.get("regression.method", "average"); regressionMethod = WordUtils.capitalize(regressionMethod); neighborhood.withRegressionMethod(RegressionMethod.valueOf(regressionMethod)); } // decision threshold for classification decisionThreshold = Double.parseDouble(config.get("decision.threshold", "-1.0")); if (decisionThreshold > 0 && neighborhood.IsInClassificationMode()) { String[] classAttrValues = config.get("class.attribute.values").split(","); posClassAttrValue = classAttrValues[0]; negClassAttrValue = classAttrValues[1]; neighborhood.withDecisionThreshold(decisionThreshold).withPositiveClass(posClassAttrValue); } // using cost based arbitrator for classification useCostBasedClassifier = config.getBoolean("use.cost.based.classifier", false); if (useCostBasedClassifier && neighborhood.IsInClassificationMode()) { if (null == posClassAttrValue) { String[] classAttrValues = config.get("class.attribute.values").split(","); posClassAttrValue = classAttrValues[0]; negClassAttrValue = classAttrValues[1]; } int[] missclassificationCost = Utility.intArrayFromString(config.get("misclassification.cost")); falsePosCost = missclassificationCost[0]; falseNegCost = missclassificationCost[1]; costBasedArbitrator = new CostBasedArbitrator( negClassAttrValue, posClassAttrValue, falseNegCost, falsePosCost); } // confusion matrix for classification validation if (isValidationMode) { if (neighborhood.IsInClassificationMode()) { InputStream fs = Utility.getFileStream(context.getConfiguration(), "feature.schema.file.path"); ObjectMapper mapper = new ObjectMapper(); schema = mapper.readValue(fs, FeatureSchema.class); classAttrField = schema.findClassAttrField(); List<String> cardinality = classAttrField.getCardinality(); predictingClasses = new String[2]; predictingClasses[0] = cardinality.get(0); predictingClasses[1] = cardinality.get(1); confMatrix = new ConfusionMatrix(predictingClasses[0], predictingClasses[1]); } } LOG.debug( "classCondtionWeighted:" + classCondtionWeighted + "outputClassDistr:" + outputClassDistr); }
public void setup(Context context) throws IOException, InterruptedException { this.jobconf = context.getConfiguration(); }