/** * Update the assignment plan to all the region servers * * @param plan * @throws IOException */ private void updateAssignmentPlanToRegionServers(FavoredNodesPlan plan) throws IOException { LOG.info("Start to update the region servers with the new assignment plan"); // Get the region to region server map Map<ServerName, List<HRegionInfo>> currentAssignment = this.getRegionAssignmentSnapshot().getRegionServerToRegionMap(); // track of the failed and succeeded updates int succeededNum = 0; Map<ServerName, Exception> failedUpdateMap = new HashMap<ServerName, Exception>(); for (Map.Entry<ServerName, List<HRegionInfo>> entry : currentAssignment.entrySet()) { List<Pair<HRegionInfo, List<ServerName>>> regionUpdateInfos = new ArrayList<Pair<HRegionInfo, List<ServerName>>>(); try { // Keep track of the favored updates for the current region server FavoredNodesPlan singleServerPlan = null; // Find out all the updates for the current region server for (HRegionInfo region : entry.getValue()) { List<ServerName> favoredServerList = plan.getFavoredNodes(region); if (favoredServerList != null && favoredServerList.size() == FavoredNodeAssignmentHelper.FAVORED_NODES_NUM) { // Create the single server plan if necessary if (singleServerPlan == null) { singleServerPlan = new FavoredNodesPlan(); } // Update the single server update singleServerPlan.updateAssignmentPlan(region, favoredServerList); regionUpdateInfos.add( new Pair<HRegionInfo, List<ServerName>>(region, favoredServerList)); } } if (singleServerPlan != null) { // Update the current region server with its updated favored nodes BlockingInterface currentRegionServer = ((ClusterConnection) this.connection).getAdmin(entry.getKey()); UpdateFavoredNodesRequest request = RequestConverter.buildUpdateFavoredNodesRequest(regionUpdateInfos); UpdateFavoredNodesResponse updateFavoredNodesResponse = currentRegionServer.updateFavoredNodes(null, request); LOG.info( "Region server " + ProtobufUtil.getServerInfo(null, currentRegionServer).getServerName() + " has updated " + updateFavoredNodesResponse.getResponse() + " / " + singleServerPlan.getAssignmentMap().size() + " regions with the assignment plan"); succeededNum++; } } catch (Exception e) { failedUpdateMap.put(entry.getKey(), e); } } // log the succeeded updates LOG.info("Updated " + succeededNum + " region servers with " + "the new assignment plan"); // log the failed updates int failedNum = failedUpdateMap.size(); if (failedNum != 0) { LOG.error( "Failed to update the following + " + failedNum + " region servers with its corresponding favored nodes"); for (Map.Entry<ServerName, Exception> entry : failedUpdateMap.entrySet()) { LOG.error( "Failed to update " + entry.getKey().getHostAndPort() + " because of " + entry.getValue().getMessage()); } } }
public static void main(String args[]) throws IOException { Options opt = new Options(); opt.addOption("w", "write", false, "write the assignments to hbase:meta only"); opt.addOption( "u", "update", false, "update the assignments to hbase:meta and RegionServers together"); opt.addOption("n", "dry-run", false, "do not write assignments to META"); opt.addOption("v", "verify", false, "verify current assignments against META"); opt.addOption("p", "print", false, "print the current assignment plan in META"); opt.addOption("h", "help", false, "print usage"); opt.addOption("d", "verification-details", false, "print the details of verification report"); opt.addOption("zk", true, "to set the zookeeper quorum"); opt.addOption("fs", true, "to set HDFS"); opt.addOption("hbase_root", true, "to set hbase_root directory"); opt.addOption( "overwrite", false, "overwrite the favored nodes for a single region," + "for example: -update -r regionName -f server1:port,server2:port,server3:port"); opt.addOption("r", true, "The region name that needs to be updated"); opt.addOption("f", true, "The new favored nodes"); opt.addOption( "tables", true, "The list of table names splitted by ',' ;" + "For example: -tables: t1,t2,...,tn"); opt.addOption("l", "locality", true, "enforce the maxium locality"); opt.addOption("m", "min-move", true, "enforce minium assignment move"); opt.addOption("diff", false, "calculate difference between assignment plans"); opt.addOption("munkres", false, "use munkres to place secondaries and tertiaries"); opt.addOption( "ld", "locality-dispersion", false, "print locality and dispersion " + "information for current plan"); try { // Set the log4j Logger.getLogger("org.apache.zookeeper").setLevel(Level.ERROR); Logger.getLogger("org.apache.hadoop.hbase").setLevel(Level.ERROR); Logger.getLogger("org.apache.hadoop.hbase.master.RegionPlacementMaintainer") .setLevel(Level.INFO); CommandLine cmd = new GnuParser().parse(opt, args); Configuration conf = HBaseConfiguration.create(); boolean enforceMinAssignmentMove = true; boolean enforceLocality = true; boolean verificationDetails = false; // Read all the options if ((cmd.hasOption("l") && cmd.getOptionValue("l").equalsIgnoreCase("false")) || (cmd.hasOption("locality") && cmd.getOptionValue("locality").equalsIgnoreCase("false"))) { enforceLocality = false; } if ((cmd.hasOption("m") && cmd.getOptionValue("m").equalsIgnoreCase("false")) || (cmd.hasOption("min-move") && cmd.getOptionValue("min-move").equalsIgnoreCase("false"))) { enforceMinAssignmentMove = false; } if (cmd.hasOption("zk")) { conf.set(HConstants.ZOOKEEPER_QUORUM, cmd.getOptionValue("zk")); LOG.info("Setting the zk quorum: " + conf.get(HConstants.ZOOKEEPER_QUORUM)); } if (cmd.hasOption("fs")) { conf.set(FileSystem.FS_DEFAULT_NAME_KEY, cmd.getOptionValue("fs")); LOG.info("Setting the HDFS: " + conf.get(FileSystem.FS_DEFAULT_NAME_KEY)); } if (cmd.hasOption("hbase_root")) { conf.set(HConstants.HBASE_DIR, cmd.getOptionValue("hbase_root")); LOG.info("Setting the hbase root directory: " + conf.get(HConstants.HBASE_DIR)); } // Create the region placement obj RegionPlacementMaintainer rp = new RegionPlacementMaintainer(conf, enforceLocality, enforceMinAssignmentMove); if (cmd.hasOption("d") || cmd.hasOption("verification-details")) { verificationDetails = true; } if (cmd.hasOption("tables")) { String tableNameListStr = cmd.getOptionValue("tables"); String[] tableNames = StringUtils.split(tableNameListStr, ","); rp.setTargetTableName(tableNames); } if (cmd.hasOption("munkres")) { USE_MUNKRES_FOR_PLACING_SECONDARY_AND_TERTIARY = true; } // Read all the modes if (cmd.hasOption("v") || cmd.hasOption("verify")) { // Verify the region placement. rp.verifyRegionPlacement(verificationDetails); } else if (cmd.hasOption("n") || cmd.hasOption("dry-run")) { // Generate the assignment plan only without updating the hbase:meta and RS FavoredNodesPlan plan = rp.getNewAssignmentPlan(); printAssignmentPlan(plan); } else if (cmd.hasOption("w") || cmd.hasOption("write")) { // Generate the new assignment plan FavoredNodesPlan plan = rp.getNewAssignmentPlan(); // Print the new assignment plan printAssignmentPlan(plan); // Write the new assignment plan to META rp.updateAssignmentPlanToMeta(plan); } else if (cmd.hasOption("u") || cmd.hasOption("update")) { // Generate the new assignment plan FavoredNodesPlan plan = rp.getNewAssignmentPlan(); // Print the new assignment plan printAssignmentPlan(plan); // Update the assignment to hbase:meta and Region Servers rp.updateAssignmentPlan(plan); } else if (cmd.hasOption("diff")) { FavoredNodesPlan newPlan = rp.getNewAssignmentPlan(); Map<String, Map<String, Float>> locality = FSUtils.getRegionDegreeLocalityMappingFromFS(conf); Map<TableName, Integer> movesPerTable = rp.getRegionsMovement(newPlan); rp.checkDifferencesWithOldPlan(movesPerTable, locality, newPlan); System.out.println("Do you want to update the assignment plan? [y/n]"); Scanner s = new Scanner(System.in); String input = s.nextLine().trim(); if (input.equals("y")) { System.out.println("Updating assignment plan..."); rp.updateAssignmentPlan(newPlan); } s.close(); } else if (cmd.hasOption("ld")) { Map<String, Map<String, Float>> locality = FSUtils.getRegionDegreeLocalityMappingFromFS(conf); rp.printLocalityAndDispersionForCurrentPlan(locality); } else if (cmd.hasOption("p") || cmd.hasOption("print")) { FavoredNodesPlan plan = rp.getRegionAssignmentSnapshot().getExistingAssignmentPlan(); printAssignmentPlan(plan); } else if (cmd.hasOption("overwrite")) { if (!cmd.hasOption("f") || !cmd.hasOption("r")) { throw new IllegalArgumentException( "Please specify: " + " -update -r regionName -f server1:port,server2:port,server3:port"); } String regionName = cmd.getOptionValue("r"); String favoredNodesStr = cmd.getOptionValue("f"); LOG.info( "Going to update the region " + regionName + " with the new favored nodes " + favoredNodesStr); List<ServerName> favoredNodes = null; HRegionInfo regionInfo = rp.getRegionAssignmentSnapshot().getRegionNameToRegionInfoMap().get(regionName); if (regionInfo == null) { LOG.error("Cannot find the region " + regionName + " from the META"); } else { try { favoredNodes = getFavoredNodeList(favoredNodesStr); } catch (IllegalArgumentException e) { LOG.error("Cannot parse the invalid favored nodes because " + e); } FavoredNodesPlan newPlan = new FavoredNodesPlan(); newPlan.updateAssignmentPlan(regionInfo, favoredNodes); rp.updateAssignmentPlan(newPlan); } } else { printHelp(opt); } } catch (ParseException e) { printHelp(opt); } }
/** * Generate the assignment plan for the existing table * * @param tableName * @param assignmentSnapshot * @param regionLocalityMap * @param plan * @param munkresForSecondaryAndTertiary if set on true the assignment plan for the tertiary and * secondary will be generated with Munkres algorithm, otherwise will be generated using * placeSecondaryAndTertiaryRS * @throws IOException */ private void genAssignmentPlan( TableName tableName, SnapshotOfRegionAssignmentFromMeta assignmentSnapshot, Map<String, Map<String, Float>> regionLocalityMap, FavoredNodesPlan plan, boolean munkresForSecondaryAndTertiary) throws IOException { // Get the all the regions for the current table List<HRegionInfo> regions = assignmentSnapshot.getTableToRegionMap().get(tableName); int numRegions = regions.size(); // Get the current assignment map Map<HRegionInfo, ServerName> currentAssignmentMap = assignmentSnapshot.getRegionToRegionServerMap(); // Get the all the region servers List<ServerName> servers = new ArrayList<ServerName>(); try (Admin admin = this.connection.getAdmin()) { servers.addAll(admin.getClusterStatus().getServers()); } LOG.info( "Start to generate assignment plan for " + numRegions + " regions from table " + tableName + " with " + servers.size() + " region servers"); int slotsPerServer = (int) Math.ceil((float) numRegions / servers.size()); int regionSlots = slotsPerServer * servers.size(); // Compute the primary, secondary and tertiary costs for each region/server // pair. These costs are based only on node locality and rack locality, and // will be modified later. float[][] primaryCost = new float[numRegions][regionSlots]; float[][] secondaryCost = new float[numRegions][regionSlots]; float[][] tertiaryCost = new float[numRegions][regionSlots]; if (this.enforceLocality && regionLocalityMap != null) { // Transform the locality mapping into a 2D array, assuming that any // unspecified locality value is 0. float[][] localityPerServer = new float[numRegions][regionSlots]; for (int i = 0; i < numRegions; i++) { Map<String, Float> serverLocalityMap = regionLocalityMap.get(regions.get(i).getEncodedName()); if (serverLocalityMap == null) { continue; } for (int j = 0; j < servers.size(); j++) { String serverName = servers.get(j).getHostname(); if (serverName == null) { continue; } Float locality = serverLocalityMap.get(serverName); if (locality == null) { continue; } for (int k = 0; k < slotsPerServer; k++) { // If we can't find the locality of a region to a server, which occurs // because locality is only reported for servers which have some // blocks of a region local, then the locality for that pair is 0. localityPerServer[i][j * slotsPerServer + k] = locality.floatValue(); } } } // Compute the total rack locality for each region in each rack. The total // rack locality is the sum of the localities of a region on all servers in // a rack. Map<String, Map<HRegionInfo, Float>> rackRegionLocality = new HashMap<String, Map<HRegionInfo, Float>>(); for (int i = 0; i < numRegions; i++) { HRegionInfo region = regions.get(i); for (int j = 0; j < regionSlots; j += slotsPerServer) { String rack = rackManager.getRack(servers.get(j / slotsPerServer)); Map<HRegionInfo, Float> rackLocality = rackRegionLocality.get(rack); if (rackLocality == null) { rackLocality = new HashMap<HRegionInfo, Float>(); rackRegionLocality.put(rack, rackLocality); } Float localityObj = rackLocality.get(region); float locality = localityObj == null ? 0 : localityObj.floatValue(); locality += localityPerServer[i][j]; rackLocality.put(region, locality); } } for (int i = 0; i < numRegions; i++) { for (int j = 0; j < regionSlots; j++) { String rack = rackManager.getRack(servers.get(j / slotsPerServer)); Float totalRackLocalityObj = rackRegionLocality.get(rack).get(regions.get(i)); float totalRackLocality = totalRackLocalityObj == null ? 0 : totalRackLocalityObj.floatValue(); // Primary cost aims to favor servers with high node locality and low // rack locality, so that secondaries and tertiaries can be chosen for // nodes with high rack locality. This might give primaries with // slightly less locality at first compared to a cost which only // considers the node locality, but should be better in the long run. primaryCost[i][j] = 1 - (2 * localityPerServer[i][j] - totalRackLocality); // Secondary cost aims to favor servers with high node locality and high // rack locality since the tertiary will be chosen from the same rack as // the secondary. This could be negative, but that is okay. secondaryCost[i][j] = 2 - (localityPerServer[i][j] + totalRackLocality); // Tertiary cost is only concerned with the node locality. It will later // be restricted to only hosts on the same rack as the secondary. tertiaryCost[i][j] = 1 - localityPerServer[i][j]; } } } if (this.enforceMinAssignmentMove && currentAssignmentMap != null) { // We want to minimize the number of regions which move as the result of a // new assignment. Therefore, slightly penalize any placement which is for // a host that is not currently serving the region. for (int i = 0; i < numRegions; i++) { for (int j = 0; j < servers.size(); j++) { ServerName currentAddress = currentAssignmentMap.get(regions.get(i)); if (currentAddress != null && !currentAddress.equals(servers.get(j))) { for (int k = 0; k < slotsPerServer; k++) { primaryCost[i][j * slotsPerServer + k] += NOT_CURRENT_HOST_PENALTY; } } } } } // Artificially increase cost of last slot of each server to evenly // distribute the slop, otherwise there will be a few servers with too few // regions and many servers with the max number of regions. for (int i = 0; i < numRegions; i++) { for (int j = 0; j < regionSlots; j += slotsPerServer) { primaryCost[i][j] += LAST_SLOT_COST_PENALTY; secondaryCost[i][j] += LAST_SLOT_COST_PENALTY; tertiaryCost[i][j] += LAST_SLOT_COST_PENALTY; } } RandomizedMatrix randomizedMatrix = new RandomizedMatrix(numRegions, regionSlots); primaryCost = randomizedMatrix.transform(primaryCost); int[] primaryAssignment = new MunkresAssignment(primaryCost).solve(); primaryAssignment = randomizedMatrix.invertIndices(primaryAssignment); // Modify the secondary and tertiary costs for each region/server pair to // prevent a region from being assigned to the same rack for both primary // and either one of secondary or tertiary. for (int i = 0; i < numRegions; i++) { int slot = primaryAssignment[i]; String rack = rackManager.getRack(servers.get(slot / slotsPerServer)); for (int k = 0; k < servers.size(); k++) { if (!rackManager.getRack(servers.get(k)).equals(rack)) { continue; } if (k == slot / slotsPerServer) { // Same node, do not place secondary or tertiary here ever. for (int m = 0; m < slotsPerServer; m++) { secondaryCost[i][k * slotsPerServer + m] = MAX_COST; tertiaryCost[i][k * slotsPerServer + m] = MAX_COST; } } else { // Same rack, do not place secondary or tertiary here if possible. for (int m = 0; m < slotsPerServer; m++) { secondaryCost[i][k * slotsPerServer + m] = AVOID_COST; tertiaryCost[i][k * slotsPerServer + m] = AVOID_COST; } } } } if (munkresForSecondaryAndTertiary) { randomizedMatrix = new RandomizedMatrix(numRegions, regionSlots); secondaryCost = randomizedMatrix.transform(secondaryCost); int[] secondaryAssignment = new MunkresAssignment(secondaryCost).solve(); secondaryAssignment = randomizedMatrix.invertIndices(secondaryAssignment); // Modify the tertiary costs for each region/server pair to ensure that a // region is assigned to a tertiary server on the same rack as its secondary // server, but not the same server in that rack. for (int i = 0; i < numRegions; i++) { int slot = secondaryAssignment[i]; String rack = rackManager.getRack(servers.get(slot / slotsPerServer)); for (int k = 0; k < servers.size(); k++) { if (k == slot / slotsPerServer) { // Same node, do not place tertiary here ever. for (int m = 0; m < slotsPerServer; m++) { tertiaryCost[i][k * slotsPerServer + m] = MAX_COST; } } else { if (rackManager.getRack(servers.get(k)).equals(rack)) { continue; } // Different rack, do not place tertiary here if possible. for (int m = 0; m < slotsPerServer; m++) { tertiaryCost[i][k * slotsPerServer + m] = AVOID_COST; } } } } randomizedMatrix = new RandomizedMatrix(numRegions, regionSlots); tertiaryCost = randomizedMatrix.transform(tertiaryCost); int[] tertiaryAssignment = new MunkresAssignment(tertiaryCost).solve(); tertiaryAssignment = randomizedMatrix.invertIndices(tertiaryAssignment); for (int i = 0; i < numRegions; i++) { List<ServerName> favoredServers = new ArrayList<ServerName>(FavoredNodeAssignmentHelper.FAVORED_NODES_NUM); ServerName s = servers.get(primaryAssignment[i] / slotsPerServer); favoredServers.add( ServerName.valueOf(s.getHostname(), s.getPort(), ServerName.NON_STARTCODE)); s = servers.get(secondaryAssignment[i] / slotsPerServer); favoredServers.add( ServerName.valueOf(s.getHostname(), s.getPort(), ServerName.NON_STARTCODE)); s = servers.get(tertiaryAssignment[i] / slotsPerServer); favoredServers.add( ServerName.valueOf(s.getHostname(), s.getPort(), ServerName.NON_STARTCODE)); // Update the assignment plan plan.updateAssignmentPlan(regions.get(i), favoredServers); } LOG.info( "Generated the assignment plan for " + numRegions + " regions from table " + tableName + " with " + servers.size() + " region servers"); LOG.info("Assignment plan for secondary and tertiary generated " + "using MunkresAssignment"); } else { Map<HRegionInfo, ServerName> primaryRSMap = new HashMap<HRegionInfo, ServerName>(); for (int i = 0; i < numRegions; i++) { primaryRSMap.put(regions.get(i), servers.get(primaryAssignment[i] / slotsPerServer)); } FavoredNodeAssignmentHelper favoredNodeHelper = new FavoredNodeAssignmentHelper(servers, conf); favoredNodeHelper.initialize(); Map<HRegionInfo, ServerName[]> secondaryAndTertiaryMap = favoredNodeHelper.placeSecondaryAndTertiaryWithRestrictions(primaryRSMap); for (int i = 0; i < numRegions; i++) { List<ServerName> favoredServers = new ArrayList<ServerName>(FavoredNodeAssignmentHelper.FAVORED_NODES_NUM); HRegionInfo currentRegion = regions.get(i); ServerName s = primaryRSMap.get(currentRegion); favoredServers.add( ServerName.valueOf(s.getHostname(), s.getPort(), ServerName.NON_STARTCODE)); ServerName[] secondaryAndTertiary = secondaryAndTertiaryMap.get(currentRegion); s = secondaryAndTertiary[0]; favoredServers.add( ServerName.valueOf(s.getHostname(), s.getPort(), ServerName.NON_STARTCODE)); s = secondaryAndTertiary[1]; favoredServers.add( ServerName.valueOf(s.getHostname(), s.getPort(), ServerName.NON_STARTCODE)); // Update the assignment plan plan.updateAssignmentPlan(regions.get(i), favoredServers); } LOG.info( "Generated the assignment plan for " + numRegions + " regions from table " + tableName + " with " + servers.size() + " region servers"); LOG.info( "Assignment plan for secondary and tertiary generated " + "using placeSecondaryAndTertiaryWithRestrictions method"); } }