/** * Update the assignment plan into hbase:meta * * @param plan the assignments plan to be updated into hbase:meta * @throws IOException if cannot update assignment plan in hbase:meta */ public void updateAssignmentPlanToMeta(FavoredNodesPlan plan) throws IOException { try { LOG.info("Start to update the hbase:meta with the new assignment plan"); Map<HRegionInfo, List<ServerName>> assignmentMap = plan.getAssignmentMap(); FavoredNodeAssignmentHelper.updateMetaWithFavoredNodesInfo(assignmentMap, conf); LOG.info("Updated the hbase:meta with the new assignment plan"); } catch (Exception e) { LOG.error( "Failed to update hbase:meta with the new assignment" + "plan because " + e.getMessage()); } }
/** * Print the assignment plan to the system output stream * * @param plan */ public static void printAssignmentPlan(FavoredNodesPlan plan) { if (plan == null) return; LOG.info("========== Start to print the assignment plan ================"); // sort the map based on region info Map<HRegionInfo, List<ServerName>> assignmentMap = new TreeMap<HRegionInfo, List<ServerName>>(plan.getAssignmentMap()); for (Map.Entry<HRegionInfo, List<ServerName>> entry : assignmentMap.entrySet()) { String serverList = FavoredNodeAssignmentHelper.getFavoredNodesAsString(entry.getValue()); String regionName = entry.getKey().getRegionNameAsString(); LOG.info("Region: " + regionName); LOG.info("Its favored nodes: " + serverList); } LOG.info("========== Finish to print the assignment plan ================"); }
/** * Generate the assignment plan for the existing table * * @param tableName * @param assignmentSnapshot * @param regionLocalityMap * @param plan * @param munkresForSecondaryAndTertiary if set on true the assignment plan for the tertiary and * secondary will be generated with Munkres algorithm, otherwise will be generated using * placeSecondaryAndTertiaryRS * @throws IOException */ private void genAssignmentPlan( TableName tableName, SnapshotOfRegionAssignmentFromMeta assignmentSnapshot, Map<String, Map<String, Float>> regionLocalityMap, FavoredNodesPlan plan, boolean munkresForSecondaryAndTertiary) throws IOException { // Get the all the regions for the current table List<HRegionInfo> regions = assignmentSnapshot.getTableToRegionMap().get(tableName); int numRegions = regions.size(); // Get the current assignment map Map<HRegionInfo, ServerName> currentAssignmentMap = assignmentSnapshot.getRegionToRegionServerMap(); // Get the all the region servers List<ServerName> servers = new ArrayList<ServerName>(); try (Admin admin = this.connection.getAdmin()) { servers.addAll(admin.getClusterStatus().getServers()); } LOG.info( "Start to generate assignment plan for " + numRegions + " regions from table " + tableName + " with " + servers.size() + " region servers"); int slotsPerServer = (int) Math.ceil((float) numRegions / servers.size()); int regionSlots = slotsPerServer * servers.size(); // Compute the primary, secondary and tertiary costs for each region/server // pair. These costs are based only on node locality and rack locality, and // will be modified later. float[][] primaryCost = new float[numRegions][regionSlots]; float[][] secondaryCost = new float[numRegions][regionSlots]; float[][] tertiaryCost = new float[numRegions][regionSlots]; if (this.enforceLocality && regionLocalityMap != null) { // Transform the locality mapping into a 2D array, assuming that any // unspecified locality value is 0. float[][] localityPerServer = new float[numRegions][regionSlots]; for (int i = 0; i < numRegions; i++) { Map<String, Float> serverLocalityMap = regionLocalityMap.get(regions.get(i).getEncodedName()); if (serverLocalityMap == null) { continue; } for (int j = 0; j < servers.size(); j++) { String serverName = servers.get(j).getHostname(); if (serverName == null) { continue; } Float locality = serverLocalityMap.get(serverName); if (locality == null) { continue; } for (int k = 0; k < slotsPerServer; k++) { // If we can't find the locality of a region to a server, which occurs // because locality is only reported for servers which have some // blocks of a region local, then the locality for that pair is 0. localityPerServer[i][j * slotsPerServer + k] = locality.floatValue(); } } } // Compute the total rack locality for each region in each rack. The total // rack locality is the sum of the localities of a region on all servers in // a rack. Map<String, Map<HRegionInfo, Float>> rackRegionLocality = new HashMap<String, Map<HRegionInfo, Float>>(); for (int i = 0; i < numRegions; i++) { HRegionInfo region = regions.get(i); for (int j = 0; j < regionSlots; j += slotsPerServer) { String rack = rackManager.getRack(servers.get(j / slotsPerServer)); Map<HRegionInfo, Float> rackLocality = rackRegionLocality.get(rack); if (rackLocality == null) { rackLocality = new HashMap<HRegionInfo, Float>(); rackRegionLocality.put(rack, rackLocality); } Float localityObj = rackLocality.get(region); float locality = localityObj == null ? 0 : localityObj.floatValue(); locality += localityPerServer[i][j]; rackLocality.put(region, locality); } } for (int i = 0; i < numRegions; i++) { for (int j = 0; j < regionSlots; j++) { String rack = rackManager.getRack(servers.get(j / slotsPerServer)); Float totalRackLocalityObj = rackRegionLocality.get(rack).get(regions.get(i)); float totalRackLocality = totalRackLocalityObj == null ? 0 : totalRackLocalityObj.floatValue(); // Primary cost aims to favor servers with high node locality and low // rack locality, so that secondaries and tertiaries can be chosen for // nodes with high rack locality. This might give primaries with // slightly less locality at first compared to a cost which only // considers the node locality, but should be better in the long run. primaryCost[i][j] = 1 - (2 * localityPerServer[i][j] - totalRackLocality); // Secondary cost aims to favor servers with high node locality and high // rack locality since the tertiary will be chosen from the same rack as // the secondary. This could be negative, but that is okay. secondaryCost[i][j] = 2 - (localityPerServer[i][j] + totalRackLocality); // Tertiary cost is only concerned with the node locality. It will later // be restricted to only hosts on the same rack as the secondary. tertiaryCost[i][j] = 1 - localityPerServer[i][j]; } } } if (this.enforceMinAssignmentMove && currentAssignmentMap != null) { // We want to minimize the number of regions which move as the result of a // new assignment. Therefore, slightly penalize any placement which is for // a host that is not currently serving the region. for (int i = 0; i < numRegions; i++) { for (int j = 0; j < servers.size(); j++) { ServerName currentAddress = currentAssignmentMap.get(regions.get(i)); if (currentAddress != null && !currentAddress.equals(servers.get(j))) { for (int k = 0; k < slotsPerServer; k++) { primaryCost[i][j * slotsPerServer + k] += NOT_CURRENT_HOST_PENALTY; } } } } } // Artificially increase cost of last slot of each server to evenly // distribute the slop, otherwise there will be a few servers with too few // regions and many servers with the max number of regions. for (int i = 0; i < numRegions; i++) { for (int j = 0; j < regionSlots; j += slotsPerServer) { primaryCost[i][j] += LAST_SLOT_COST_PENALTY; secondaryCost[i][j] += LAST_SLOT_COST_PENALTY; tertiaryCost[i][j] += LAST_SLOT_COST_PENALTY; } } RandomizedMatrix randomizedMatrix = new RandomizedMatrix(numRegions, regionSlots); primaryCost = randomizedMatrix.transform(primaryCost); int[] primaryAssignment = new MunkresAssignment(primaryCost).solve(); primaryAssignment = randomizedMatrix.invertIndices(primaryAssignment); // Modify the secondary and tertiary costs for each region/server pair to // prevent a region from being assigned to the same rack for both primary // and either one of secondary or tertiary. for (int i = 0; i < numRegions; i++) { int slot = primaryAssignment[i]; String rack = rackManager.getRack(servers.get(slot / slotsPerServer)); for (int k = 0; k < servers.size(); k++) { if (!rackManager.getRack(servers.get(k)).equals(rack)) { continue; } if (k == slot / slotsPerServer) { // Same node, do not place secondary or tertiary here ever. for (int m = 0; m < slotsPerServer; m++) { secondaryCost[i][k * slotsPerServer + m] = MAX_COST; tertiaryCost[i][k * slotsPerServer + m] = MAX_COST; } } else { // Same rack, do not place secondary or tertiary here if possible. for (int m = 0; m < slotsPerServer; m++) { secondaryCost[i][k * slotsPerServer + m] = AVOID_COST; tertiaryCost[i][k * slotsPerServer + m] = AVOID_COST; } } } } if (munkresForSecondaryAndTertiary) { randomizedMatrix = new RandomizedMatrix(numRegions, regionSlots); secondaryCost = randomizedMatrix.transform(secondaryCost); int[] secondaryAssignment = new MunkresAssignment(secondaryCost).solve(); secondaryAssignment = randomizedMatrix.invertIndices(secondaryAssignment); // Modify the tertiary costs for each region/server pair to ensure that a // region is assigned to a tertiary server on the same rack as its secondary // server, but not the same server in that rack. for (int i = 0; i < numRegions; i++) { int slot = secondaryAssignment[i]; String rack = rackManager.getRack(servers.get(slot / slotsPerServer)); for (int k = 0; k < servers.size(); k++) { if (k == slot / slotsPerServer) { // Same node, do not place tertiary here ever. for (int m = 0; m < slotsPerServer; m++) { tertiaryCost[i][k * slotsPerServer + m] = MAX_COST; } } else { if (rackManager.getRack(servers.get(k)).equals(rack)) { continue; } // Different rack, do not place tertiary here if possible. for (int m = 0; m < slotsPerServer; m++) { tertiaryCost[i][k * slotsPerServer + m] = AVOID_COST; } } } } randomizedMatrix = new RandomizedMatrix(numRegions, regionSlots); tertiaryCost = randomizedMatrix.transform(tertiaryCost); int[] tertiaryAssignment = new MunkresAssignment(tertiaryCost).solve(); tertiaryAssignment = randomizedMatrix.invertIndices(tertiaryAssignment); for (int i = 0; i < numRegions; i++) { List<ServerName> favoredServers = new ArrayList<ServerName>(FavoredNodeAssignmentHelper.FAVORED_NODES_NUM); ServerName s = servers.get(primaryAssignment[i] / slotsPerServer); favoredServers.add( ServerName.valueOf(s.getHostname(), s.getPort(), ServerName.NON_STARTCODE)); s = servers.get(secondaryAssignment[i] / slotsPerServer); favoredServers.add( ServerName.valueOf(s.getHostname(), s.getPort(), ServerName.NON_STARTCODE)); s = servers.get(tertiaryAssignment[i] / slotsPerServer); favoredServers.add( ServerName.valueOf(s.getHostname(), s.getPort(), ServerName.NON_STARTCODE)); // Update the assignment plan plan.updateAssignmentPlan(regions.get(i), favoredServers); } LOG.info( "Generated the assignment plan for " + numRegions + " regions from table " + tableName + " with " + servers.size() + " region servers"); LOG.info("Assignment plan for secondary and tertiary generated " + "using MunkresAssignment"); } else { Map<HRegionInfo, ServerName> primaryRSMap = new HashMap<HRegionInfo, ServerName>(); for (int i = 0; i < numRegions; i++) { primaryRSMap.put(regions.get(i), servers.get(primaryAssignment[i] / slotsPerServer)); } FavoredNodeAssignmentHelper favoredNodeHelper = new FavoredNodeAssignmentHelper(servers, conf); favoredNodeHelper.initialize(); Map<HRegionInfo, ServerName[]> secondaryAndTertiaryMap = favoredNodeHelper.placeSecondaryAndTertiaryWithRestrictions(primaryRSMap); for (int i = 0; i < numRegions; i++) { List<ServerName> favoredServers = new ArrayList<ServerName>(FavoredNodeAssignmentHelper.FAVORED_NODES_NUM); HRegionInfo currentRegion = regions.get(i); ServerName s = primaryRSMap.get(currentRegion); favoredServers.add( ServerName.valueOf(s.getHostname(), s.getPort(), ServerName.NON_STARTCODE)); ServerName[] secondaryAndTertiary = secondaryAndTertiaryMap.get(currentRegion); s = secondaryAndTertiary[0]; favoredServers.add( ServerName.valueOf(s.getHostname(), s.getPort(), ServerName.NON_STARTCODE)); s = secondaryAndTertiary[1]; favoredServers.add( ServerName.valueOf(s.getHostname(), s.getPort(), ServerName.NON_STARTCODE)); // Update the assignment plan plan.updateAssignmentPlan(regions.get(i), favoredServers); } LOG.info( "Generated the assignment plan for " + numRegions + " regions from table " + tableName + " with " + servers.size() + " region servers"); LOG.info( "Assignment plan for secondary and tertiary generated " + "using placeSecondaryAndTertiaryWithRestrictions method"); } }