public Generator(ParameterTool pt) { this.payload = new byte[pt.getInt("payload")]; this.delay = pt.getInt("delay"); this.withFt = pt.has("ft"); this.latFreq = pt.getInt("latencyFreq"); this.sleepFreq = pt.getInt("sleepFreq"); }
public static void main(String[] args) throws Exception { ParameterTool pt = ParameterTool.fromArgs(args); int par = pt.getInt("para"); TopologyBuilder builder = new TopologyBuilder(); builder.setSpout("source0", new Generator(pt), pt.getInt("sourceParallelism")); int i = 0; for (; i < pt.getInt("repartitions", 1) - 1; i++) { System.out.println("adding source" + i + " --> source" + (i + 1)); builder .setBolt("source" + (i + 1), new RepartPassThroughBolt(pt), pt.getInt("sinkParallelism")) .fieldsGrouping("source" + i, new Fields("id")); } System.out.println("adding final source" + i + " --> sink"); builder .setBolt("sink", new Sink(pt), pt.getInt("sinkParallelism")) .fieldsGrouping("source" + i, new Fields("id")); Config conf = new Config(); conf.setDebug(false); // System.exit(1); if (!pt.has("local")) { conf.setNumWorkers(par); StormSubmitter.submitTopologyWithProgressBar( "throughput-" + pt.get("name", "no_name"), conf, builder.createTopology()); } else { conf.setMaxTaskParallelism(par); LocalCluster cluster = new LocalCluster(); cluster.submitTopology("throughput", conf, builder.createTopology()); Thread.sleep(300000); cluster.shutdown(); } }
public static void main(String[] args) throws Exception { // Checking input parameters final ParameterTool params = ParameterTool.fromArgs(args); System.out.println( "Usage: KMeans --points <path> --centroids <path> --output <path> --iterations <n>"); // set up execution environment ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); env.getConfig() .setGlobalJobParameters(params); // make parameters available in the web interface // get input data: // read the points and centroids from the provided paths or fall back to default data DataSet<Point> points = getPointDataSet(params, env); DataSet<Centroid> centroids = getCentroidDataSet(params, env); // set number of bulk iterations for KMeans algorithm IterativeDataSet<Centroid> loop = centroids.iterate(params.getInt("iterations", 10)); DataSet<Centroid> newCentroids = points // compute closest centroid for each point .map(new SelectNearestCenter()) .withBroadcastSet(loop, "centroids") // count and sum point coordinates for each centroid .map(new CountAppender()) .groupBy(0) .reduce(new CentroidAccumulator()) // compute new centroids from point counts and coordinate sums .map(new CentroidAverager()); // feed new centroids back into next iteration DataSet<Centroid> finalCentroids = loop.closeWith(newCentroids); DataSet<Tuple2<Integer, Point>> clusteredPoints = points // assign points to final clusters .map(new SelectNearestCenter()) .withBroadcastSet(finalCentroids, "centroids"); // emit result if (params.has("output")) { clusteredPoints.writeAsCsv(params.get("output"), "\n", " "); // since file sinks are lazy, we trigger the execution explicitly env.execute("KMeans Example"); } else { System.out.println("Printing result to stdout. Use --output to specify output path."); clusteredPoints.print(); } }
public Sink(ParameterTool pt) throws UnknownHostException { this.pt = pt; this.withFT = pt.has("ft"); this.logfreq = pt.getInt("logfreq"); this.host = InetAddress.getLocalHost().getHostName(); }