/** * Computes a linear interpolating function for the data set. * * @param x the arguments for the interpolation points * @param y the values for the interpolation points * @return a function which interpolates the data set * @throws DimensionMismatchException if {@code x} and {@code y} have different sizes. * @throws NonMonotonicSequenceException if {@code x} is not sorted in strict increasing order. * @throws NumberIsTooSmallException if the size of {@code x} is smaller than 2. */ public PolynomialSplineFunction interpolate(double x[], double y[]) throws DimensionMismatchException, NumberIsTooSmallException, NonMonotonicSequenceException { if (x.length != y.length) { throw new DimensionMismatchException(x.length, y.length); } if (x.length < 2) { throw new NumberIsTooSmallException(LocalizedFormats.NUMBER_OF_POINTS, x.length, 2, true); } // Number of intervals. The number of data points is n + 1. int n = x.length - 1; MathArrays.checkOrder(x); // Slope of the lines between the datapoints. final double m[] = new double[n]; for (int i = 0; i < n; i++) { m[i] = (y[i + 1] - y[i]) / (x[i + 1] - x[i]); } final PolynomialFunction polynomials[] = new PolynomialFunction[n]; final double coefficients[] = new double[2]; for (int i = 0; i < n; i++) { coefficients[0] = y[i]; coefficients[1] = m[i]; polynomials[i] = new PolynomialFunction(coefficients); } return new PolynomialSplineFunction(x, polynomials); }
/** * Check that the interpolation arrays are valid. The arrays features checked by this method are * that both arrays have the same length and this length is at least 2. * * @param x Interpolating points array. * @param y Interpolating values array. * @param abort Whether to throw an exception if {@code x} is not sorted. * @throws DimensionMismatchException if the array lengths are different. * @throws NumberIsTooSmallException if the number of points is less than 2. * @throws org.apache.commons.math3.exception.NonMonotonicSequenceException if {@code x} is not * sorted in strictly increasing order and {@code abort} is {@code true}. * @return {@code false} if the {@code x} is not sorted in increasing order, {@code true} * otherwise. * @see #evaluate(double[], double[], double) * @see #computeCoefficients() */ public static boolean verifyInterpolationArray(double x[], double y[], boolean abort) throws DimensionMismatchException, NumberIsTooSmallException, NonMonotonicSequenceException { if (x.length != y.length) { throw new DimensionMismatchException(x.length, y.length); } if (x.length < 2) { throw new NumberIsTooSmallException( LocalizedFormats.WRONG_NUMBER_OF_POINTS, 2, x.length, true); } return MathArrays.checkOrder(x, MathArrays.OrderDirection.INCREASING, true, abort); }
/** * @param x Sample values of the x-coordinate, in increasing order. * @param y Sample values of the y-coordinate, in increasing order. * @param f Values of the function on every grid point. * @param dFdX Values of the partial derivative of function with respect to x on every grid point. * @param dFdY Values of the partial derivative of function with respect to y on every grid point. * @param d2FdXdY Values of the cross partial derivative of function on every grid point. * @param initializeDerivatives Whether to initialize the internal data needed for calling any of * the methods that compute the partial derivatives this function. * @throws DimensionMismatchException if the various arrays do not contain the expected number of * elements. * @throws NonMonotonicSequenceException if {@code x} or {@code y} are not strictly increasing. * @throws NoDataException if any of the arrays has zero length. * @see #partialDerivativeX(double,double) * @see #partialDerivativeY(double,double) * @see #partialDerivativeXX(double,double) * @see #partialDerivativeYY(double,double) * @see #partialDerivativeXY(double,double) */ public BicubicSplineInterpolatingFunction( double[] x, double[] y, double[][] f, double[][] dFdX, double[][] dFdY, double[][] d2FdXdY, boolean initializeDerivatives) throws DimensionMismatchException, NoDataException, NonMonotonicSequenceException { final int xLen = x.length; final int yLen = y.length; if (xLen == 0 || yLen == 0 || f.length == 0 || f[0].length == 0) { throw new NoDataException(); } if (xLen != f.length) { throw new DimensionMismatchException(xLen, f.length); } if (xLen != dFdX.length) { throw new DimensionMismatchException(xLen, dFdX.length); } if (xLen != dFdY.length) { throw new DimensionMismatchException(xLen, dFdY.length); } if (xLen != d2FdXdY.length) { throw new DimensionMismatchException(xLen, d2FdXdY.length); } MathArrays.checkOrder(x); MathArrays.checkOrder(y); xval = x.clone(); yval = y.clone(); final int lastI = xLen - 1; final int lastJ = yLen - 1; splines = new BicubicSplineFunction[lastI][lastJ]; for (int i = 0; i < lastI; i++) { if (f[i].length != yLen) { throw new DimensionMismatchException(f[i].length, yLen); } if (dFdX[i].length != yLen) { throw new DimensionMismatchException(dFdX[i].length, yLen); } if (dFdY[i].length != yLen) { throw new DimensionMismatchException(dFdY[i].length, yLen); } if (d2FdXdY[i].length != yLen) { throw new DimensionMismatchException(d2FdXdY[i].length, yLen); } final int ip1 = i + 1; for (int j = 0; j < lastJ; j++) { final int jp1 = j + 1; final double[] beta = new double[] { f[i][j], f[ip1][j], f[i][jp1], f[ip1][jp1], dFdX[i][j], dFdX[ip1][j], dFdX[i][jp1], dFdX[ip1][jp1], dFdY[i][j], dFdY[ip1][j], dFdY[i][jp1], dFdY[ip1][jp1], d2FdXdY[i][j], d2FdXdY[ip1][j], d2FdXdY[i][jp1], d2FdXdY[ip1][jp1] }; splines[i][j] = new BicubicSplineFunction(computeSplineCoefficients(beta), initializeDerivatives); } } if (initializeDerivatives) { // Compute all partial derivatives. partialDerivatives = new BivariateFunction[5][lastI][lastJ]; for (int i = 0; i < lastI; i++) { for (int j = 0; j < lastJ; j++) { final BicubicSplineFunction bcs = splines[i][j]; partialDerivatives[0][i][j] = bcs.partialDerivativeX(); partialDerivatives[1][i][j] = bcs.partialDerivativeY(); partialDerivatives[2][i][j] = bcs.partialDerivativeXX(); partialDerivatives[3][i][j] = bcs.partialDerivativeYY(); partialDerivatives[4][i][j] = bcs.partialDerivativeXY(); } } } else { // Partial derivative methods cannot be used. partialDerivatives = null; } }
/** * Computes an interpolating function for the data set. * * @param x the arguments for the interpolation points * @param y the values for the interpolation points * @return a function which interpolates the data set * @throws DimensionMismatchException if {@code x} and {@code y} have different sizes. * @throws NonMonotonicSequenceException if {@code x} is not sorted in strict increasing order. * @throws NumberIsTooSmallException if the size of {@code x} is smaller than 3. */ public PolynomialSplineFunction interpolate(double x[], double y[]) throws DimensionMismatchException, NumberIsTooSmallException, NonMonotonicSequenceException { if (x.length != y.length) { throw new DimensionMismatchException(x.length, y.length); } if (x.length < 3) { throw new NumberIsTooSmallException(LocalizedFormats.NUMBER_OF_POINTS, x.length, 3, true); } // Number of intervals. The number of data points is n + 1. final int n = x.length - 1; MathArrays.checkOrder(x); // Differences between knot points final double h[] = new double[n]; for (int i = 0; i < n; i++) { h[i] = x[i + 1] - x[i]; } final double mu[] = new double[n]; final double z[] = new double[n + 1]; mu[0] = 0d; z[0] = 0d; double g = 0; for (int i = 1; i < n; i++) { g = 2d * (x[i + 1] - x[i - 1]) - h[i - 1] * mu[i - 1]; mu[i] = h[i] / g; z[i] = (3d * (y[i + 1] * h[i - 1] - y[i] * (x[i + 1] - x[i - 1]) + y[i - 1] * h[i]) / (h[i - 1] * h[i]) - h[i - 1] * z[i - 1]) / g; } // cubic spline coefficients -- b is linear, c quadratic, d is cubic (original y's are // constants) final double b[] = new double[n]; final double c[] = new double[n + 1]; final double d[] = new double[n]; z[n] = 0d; c[n] = 0d; for (int j = n - 1; j >= 0; j--) { c[j] = z[j] - mu[j] * c[j + 1]; b[j] = (y[j + 1] - y[j]) / h[j] - h[j] * (c[j + 1] + 2d * c[j]) / 3d; d[j] = (c[j + 1] - c[j]) / (3d * h[j]); } final PolynomialFunction polynomials[] = new PolynomialFunction[n]; final double coefficients[] = new double[4]; for (int i = 0; i < n; i++) { coefficients[0] = y[i]; coefficients[1] = b[i]; coefficients[2] = c[i]; coefficients[3] = d[i]; polynomials[i] = new PolynomialFunction(coefficients); } return new PolynomialSplineFunction(x, polynomials); }
/** * Compute a weighted loess fit on the data at the original abscissae. * * @param xval Arguments for the interpolation points. * @param yval Values for the interpolation points. * @param weights point weights: coefficients by which the robustness weight of a point is * multiplied. * @return the values of the loess fit at corresponding original abscissae. * @throws NonMonotonicSequenceException if {@code xval} not sorted in strictly increasing order. * @throws DimensionMismatchException if {@code xval} and {@code yval} have different sizes. * @throws NoDataException if {@code xval} or {@code yval} has zero size. * @throws NotFiniteNumberException if any of the arguments and values are not finite real * numbers. * @throws NumberIsTooSmallException if the bandwidth is too small to accomodate the size of the * input data (i.e. the bandwidth must be larger than 2/n). * @since 2.1 */ public final double[] smooth(final double[] xval, final double[] yval, final double[] weights) throws NonMonotonicSequenceException, DimensionMismatchException, NoDataException, NotFiniteNumberException, NumberIsTooSmallException { if (xval.length != yval.length) { throw new DimensionMismatchException(xval.length, yval.length); } final int n = xval.length; if (n == 0) { throw new NoDataException(); } checkAllFiniteReal(xval); checkAllFiniteReal(yval); checkAllFiniteReal(weights); MathArrays.checkOrder(xval); if (n == 1) { return new double[] {yval[0]}; } if (n == 2) { return new double[] {yval[0], yval[1]}; } int bandwidthInPoints = (int) (bandwidth * n); if (bandwidthInPoints < 2) { throw new NumberIsTooSmallException(LocalizedFormats.BANDWIDTH, bandwidthInPoints, 2, true); } final double[] res = new double[n]; final double[] residuals = new double[n]; final double[] sortedResiduals = new double[n]; final double[] robustnessWeights = new double[n]; // Do an initial fit and 'robustnessIters' robustness iterations. // This is equivalent to doing 'robustnessIters+1' robustness iterations // starting with all robustness weights set to 1. Arrays.fill(robustnessWeights, 1); for (int iter = 0; iter <= robustnessIters; ++iter) { final int[] bandwidthInterval = {0, bandwidthInPoints - 1}; // At each x, compute a local weighted linear regression for (int i = 0; i < n; ++i) { final double x = xval[i]; // Find out the interval of source points on which // a regression is to be made. if (i > 0) { updateBandwidthInterval(xval, weights, i, bandwidthInterval); } final int ileft = bandwidthInterval[0]; final int iright = bandwidthInterval[1]; // Compute the point of the bandwidth interval that is // farthest from x final int edge; if (xval[i] - xval[ileft] > xval[iright] - xval[i]) { edge = ileft; } else { edge = iright; } // Compute a least-squares linear fit weighted by // the product of robustness weights and the tricube // weight function. // See http://en.wikipedia.org/wiki/Linear_regression // (section "Univariate linear case") // and http://en.wikipedia.org/wiki/Weighted_least_squares // (section "Weighted least squares") double sumWeights = 0; double sumX = 0; double sumXSquared = 0; double sumY = 0; double sumXY = 0; double denom = FastMath.abs(1.0 / (xval[edge] - x)); for (int k = ileft; k <= iright; ++k) { final double xk = xval[k]; final double yk = yval[k]; final double dist = (k < i) ? x - xk : xk - x; final double w = tricube(dist * denom) * robustnessWeights[k] * weights[k]; final double xkw = xk * w; sumWeights += w; sumX += xkw; sumXSquared += xk * xkw; sumY += yk * w; sumXY += yk * xkw; } final double meanX = sumX / sumWeights; final double meanY = sumY / sumWeights; final double meanXY = sumXY / sumWeights; final double meanXSquared = sumXSquared / sumWeights; final double beta; if (FastMath.sqrt(FastMath.abs(meanXSquared - meanX * meanX)) < accuracy) { beta = 0; } else { beta = (meanXY - meanX * meanY) / (meanXSquared - meanX * meanX); } final double alpha = meanY - beta * meanX; res[i] = beta * x + alpha; residuals[i] = FastMath.abs(yval[i] - res[i]); } // No need to recompute the robustness weights at the last // iteration, they won't be needed anymore if (iter == robustnessIters) { break; } // Recompute the robustness weights. // Find the median residual. // An arraycopy and a sort are completely tractable here, // because the preceding loop is a lot more expensive System.arraycopy(residuals, 0, sortedResiduals, 0, n); Arrays.sort(sortedResiduals); final double medianResidual = sortedResiduals[n / 2]; if (FastMath.abs(medianResidual) < accuracy) { break; } for (int i = 0; i < n; ++i) { final double arg = residuals[i] / (6 * medianResidual); if (arg >= 1) { robustnessWeights[i] = 0; } else { final double w = 1 - arg * arg; robustnessWeights[i] = w * w; } } } return res; }
private void appendValues(float[] incomingX, float[] incomingY, float[] incomingZ, double[] ts) { if (this._currentIndex + ts.length > BUFFER_SIZE) { int shift = this._currentIndex + ts.length - BUFFER_SIZE; for (int i = 0; i < BUFFER_SIZE - shift; i++) { _xValues[i] = _xValues[i + shift]; _yValues[i] = _yValues[i + shift]; _zValues[i] = _zValues[i + shift]; _timestamps[i] = _timestamps[i + shift]; } int offset = BUFFER_SIZE - shift; for (int i = 0; i < ts.length; i++) { _xValues[offset + i] = (double) incomingX[i]; _yValues[offset + i] = (double) incomingY[i]; _zValues[offset + i] = (double) incomingZ[i]; _timestamps[offset + i] = ts[i] / 1000; } this._currentIndex = offset + ts.length; // Should be BUFFER_SIZE } else { for (int i = 0; i < ts.length; i++) { _xValues[this._currentIndex + i] = (double) incomingX[i]; _yValues[this._currentIndex + i] = (double) incomingY[i]; _zValues[this._currentIndex + i] = (double) incomingZ[i]; _timestamps[this._currentIndex + i] = ts[i] / 1000; } this._currentIndex += ts.length; } // Log.e("PR", "Raw Timestamp: " + ts[ts.length-1]); ArrayList<Reading> readings = new ArrayList<>(); for (int i = 0; i < this._currentIndex; i++) { readings.add(new Reading(_timestamps[i], _xValues[i], _yValues[i], _zValues[i])); } boolean ordered = false; while (ordered == false) { try { Collections.sort( readings, new Comparator<Reading>() { public int compare(Reading one, Reading two) { if ((two.t - one.t) > 0) return -1; else if ((two.t - one.t) < 0) return 1; return 0; } }); double[] testTimestamps = new double[readings.size()]; for (int i = 0; i < readings.size(); i++) { Reading r = readings.get(i); testTimestamps[i] = r.t; if (i > 1 && testTimestamps[i] == testTimestamps[i - 1]) { double newTime = (testTimestamps[i - 2] + testTimestamps[i]) / 2; testTimestamps[i - 1] = newTime; readings.get(i - 1).t = newTime; } } MathArrays.checkOrder(testTimestamps); ordered = true; for (int i = 0; i < readings.size(); i++) { Reading r = readings.get(i); _timestamps[i] = r.t; _xValues[i] = r.x; _yValues[i] = r.y; _zValues[i] = r.z; } } catch (NonMonotonicSequenceException e) { e.printStackTrace(); } } }