예제 #1
0
  /**
   * Computes a linear interpolating function for the data set.
   *
   * @param x the arguments for the interpolation points
   * @param y the values for the interpolation points
   * @return a function which interpolates the data set
   * @throws DimensionMismatchException if {@code x} and {@code y} have different sizes.
   * @throws NonMonotonicSequenceException if {@code x} is not sorted in strict increasing order.
   * @throws NumberIsTooSmallException if the size of {@code x} is smaller than 2.
   */
  public PolynomialSplineFunction interpolate(double x[], double y[])
      throws DimensionMismatchException, NumberIsTooSmallException, NonMonotonicSequenceException {
    if (x.length != y.length) {
      throw new DimensionMismatchException(x.length, y.length);
    }

    if (x.length < 2) {
      throw new NumberIsTooSmallException(LocalizedFormats.NUMBER_OF_POINTS, x.length, 2, true);
    }

    // Number of intervals.  The number of data points is n + 1.
    int n = x.length - 1;

    MathArrays.checkOrder(x);

    // Slope of the lines between the datapoints.
    final double m[] = new double[n];
    for (int i = 0; i < n; i++) {
      m[i] = (y[i + 1] - y[i]) / (x[i + 1] - x[i]);
    }

    final PolynomialFunction polynomials[] = new PolynomialFunction[n];
    final double coefficients[] = new double[2];
    for (int i = 0; i < n; i++) {
      coefficients[0] = y[i];
      coefficients[1] = m[i];
      polynomials[i] = new PolynomialFunction(coefficients);
    }

    return new PolynomialSplineFunction(x, polynomials);
  }
  /**
   * Check that the interpolation arrays are valid. The arrays features checked by this method are
   * that both arrays have the same length and this length is at least 2.
   *
   * @param x Interpolating points array.
   * @param y Interpolating values array.
   * @param abort Whether to throw an exception if {@code x} is not sorted.
   * @throws DimensionMismatchException if the array lengths are different.
   * @throws NumberIsTooSmallException if the number of points is less than 2.
   * @throws org.apache.commons.math3.exception.NonMonotonicSequenceException if {@code x} is not
   *     sorted in strictly increasing order and {@code abort} is {@code true}.
   * @return {@code false} if the {@code x} is not sorted in increasing order, {@code true}
   *     otherwise.
   * @see #evaluate(double[], double[], double)
   * @see #computeCoefficients()
   */
  public static boolean verifyInterpolationArray(double x[], double y[], boolean abort)
      throws DimensionMismatchException, NumberIsTooSmallException, NonMonotonicSequenceException {
    if (x.length != y.length) {
      throw new DimensionMismatchException(x.length, y.length);
    }
    if (x.length < 2) {
      throw new NumberIsTooSmallException(
          LocalizedFormats.WRONG_NUMBER_OF_POINTS, 2, x.length, true);
    }

    return MathArrays.checkOrder(x, MathArrays.OrderDirection.INCREASING, true, abort);
  }
  /**
   * @param x Sample values of the x-coordinate, in increasing order.
   * @param y Sample values of the y-coordinate, in increasing order.
   * @param f Values of the function on every grid point.
   * @param dFdX Values of the partial derivative of function with respect to x on every grid point.
   * @param dFdY Values of the partial derivative of function with respect to y on every grid point.
   * @param d2FdXdY Values of the cross partial derivative of function on every grid point.
   * @param initializeDerivatives Whether to initialize the internal data needed for calling any of
   *     the methods that compute the partial derivatives this function.
   * @throws DimensionMismatchException if the various arrays do not contain the expected number of
   *     elements.
   * @throws NonMonotonicSequenceException if {@code x} or {@code y} are not strictly increasing.
   * @throws NoDataException if any of the arrays has zero length.
   * @see #partialDerivativeX(double,double)
   * @see #partialDerivativeY(double,double)
   * @see #partialDerivativeXX(double,double)
   * @see #partialDerivativeYY(double,double)
   * @see #partialDerivativeXY(double,double)
   */
  public BicubicSplineInterpolatingFunction(
      double[] x,
      double[] y,
      double[][] f,
      double[][] dFdX,
      double[][] dFdY,
      double[][] d2FdXdY,
      boolean initializeDerivatives)
      throws DimensionMismatchException, NoDataException, NonMonotonicSequenceException {
    final int xLen = x.length;
    final int yLen = y.length;

    if (xLen == 0 || yLen == 0 || f.length == 0 || f[0].length == 0) {
      throw new NoDataException();
    }
    if (xLen != f.length) {
      throw new DimensionMismatchException(xLen, f.length);
    }
    if (xLen != dFdX.length) {
      throw new DimensionMismatchException(xLen, dFdX.length);
    }
    if (xLen != dFdY.length) {
      throw new DimensionMismatchException(xLen, dFdY.length);
    }
    if (xLen != d2FdXdY.length) {
      throw new DimensionMismatchException(xLen, d2FdXdY.length);
    }

    MathArrays.checkOrder(x);
    MathArrays.checkOrder(y);

    xval = x.clone();
    yval = y.clone();

    final int lastI = xLen - 1;
    final int lastJ = yLen - 1;
    splines = new BicubicSplineFunction[lastI][lastJ];

    for (int i = 0; i < lastI; i++) {
      if (f[i].length != yLen) {
        throw new DimensionMismatchException(f[i].length, yLen);
      }
      if (dFdX[i].length != yLen) {
        throw new DimensionMismatchException(dFdX[i].length, yLen);
      }
      if (dFdY[i].length != yLen) {
        throw new DimensionMismatchException(dFdY[i].length, yLen);
      }
      if (d2FdXdY[i].length != yLen) {
        throw new DimensionMismatchException(d2FdXdY[i].length, yLen);
      }
      final int ip1 = i + 1;
      for (int j = 0; j < lastJ; j++) {
        final int jp1 = j + 1;
        final double[] beta =
            new double[] {
              f[i][j], f[ip1][j], f[i][jp1], f[ip1][jp1],
              dFdX[i][j], dFdX[ip1][j], dFdX[i][jp1], dFdX[ip1][jp1],
              dFdY[i][j], dFdY[ip1][j], dFdY[i][jp1], dFdY[ip1][jp1],
              d2FdXdY[i][j], d2FdXdY[ip1][j], d2FdXdY[i][jp1], d2FdXdY[ip1][jp1]
            };

        splines[i][j] =
            new BicubicSplineFunction(computeSplineCoefficients(beta), initializeDerivatives);
      }
    }

    if (initializeDerivatives) {
      // Compute all partial derivatives.
      partialDerivatives = new BivariateFunction[5][lastI][lastJ];

      for (int i = 0; i < lastI; i++) {
        for (int j = 0; j < lastJ; j++) {
          final BicubicSplineFunction bcs = splines[i][j];
          partialDerivatives[0][i][j] = bcs.partialDerivativeX();
          partialDerivatives[1][i][j] = bcs.partialDerivativeY();
          partialDerivatives[2][i][j] = bcs.partialDerivativeXX();
          partialDerivatives[3][i][j] = bcs.partialDerivativeYY();
          partialDerivatives[4][i][j] = bcs.partialDerivativeXY();
        }
      }
    } else {
      // Partial derivative methods cannot be used.
      partialDerivatives = null;
    }
  }
예제 #4
0
  /**
   * Computes an interpolating function for the data set.
   *
   * @param x the arguments for the interpolation points
   * @param y the values for the interpolation points
   * @return a function which interpolates the data set
   * @throws DimensionMismatchException if {@code x} and {@code y} have different sizes.
   * @throws NonMonotonicSequenceException if {@code x} is not sorted in strict increasing order.
   * @throws NumberIsTooSmallException if the size of {@code x} is smaller than 3.
   */
  public PolynomialSplineFunction interpolate(double x[], double y[])
      throws DimensionMismatchException, NumberIsTooSmallException, NonMonotonicSequenceException {
    if (x.length != y.length) {
      throw new DimensionMismatchException(x.length, y.length);
    }

    if (x.length < 3) {
      throw new NumberIsTooSmallException(LocalizedFormats.NUMBER_OF_POINTS, x.length, 3, true);
    }

    // Number of intervals.  The number of data points is n + 1.
    final int n = x.length - 1;

    MathArrays.checkOrder(x);

    // Differences between knot points
    final double h[] = new double[n];
    for (int i = 0; i < n; i++) {
      h[i] = x[i + 1] - x[i];
    }

    final double mu[] = new double[n];
    final double z[] = new double[n + 1];
    mu[0] = 0d;
    z[0] = 0d;
    double g = 0;
    for (int i = 1; i < n; i++) {
      g = 2d * (x[i + 1] - x[i - 1]) - h[i - 1] * mu[i - 1];
      mu[i] = h[i] / g;
      z[i] =
          (3d
                      * (y[i + 1] * h[i - 1] - y[i] * (x[i + 1] - x[i - 1]) + y[i - 1] * h[i])
                      / (h[i - 1] * h[i])
                  - h[i - 1] * z[i - 1])
              / g;
    }

    // cubic spline coefficients --  b is linear, c quadratic, d is cubic (original y's are
    // constants)
    final double b[] = new double[n];
    final double c[] = new double[n + 1];
    final double d[] = new double[n];

    z[n] = 0d;
    c[n] = 0d;

    for (int j = n - 1; j >= 0; j--) {
      c[j] = z[j] - mu[j] * c[j + 1];
      b[j] = (y[j + 1] - y[j]) / h[j] - h[j] * (c[j + 1] + 2d * c[j]) / 3d;
      d[j] = (c[j + 1] - c[j]) / (3d * h[j]);
    }

    final PolynomialFunction polynomials[] = new PolynomialFunction[n];
    final double coefficients[] = new double[4];
    for (int i = 0; i < n; i++) {
      coefficients[0] = y[i];
      coefficients[1] = b[i];
      coefficients[2] = c[i];
      coefficients[3] = d[i];
      polynomials[i] = new PolynomialFunction(coefficients);
    }

    return new PolynomialSplineFunction(x, polynomials);
  }
예제 #5
0
  /**
   * Compute a weighted loess fit on the data at the original abscissae.
   *
   * @param xval Arguments for the interpolation points.
   * @param yval Values for the interpolation points.
   * @param weights point weights: coefficients by which the robustness weight of a point is
   *     multiplied.
   * @return the values of the loess fit at corresponding original abscissae.
   * @throws NonMonotonicSequenceException if {@code xval} not sorted in strictly increasing order.
   * @throws DimensionMismatchException if {@code xval} and {@code yval} have different sizes.
   * @throws NoDataException if {@code xval} or {@code yval} has zero size.
   * @throws NotFiniteNumberException if any of the arguments and values are not finite real
   *     numbers.
   * @throws NumberIsTooSmallException if the bandwidth is too small to accomodate the size of the
   *     input data (i.e. the bandwidth must be larger than 2/n).
   * @since 2.1
   */
  public final double[] smooth(final double[] xval, final double[] yval, final double[] weights)
      throws NonMonotonicSequenceException, DimensionMismatchException, NoDataException,
          NotFiniteNumberException, NumberIsTooSmallException {
    if (xval.length != yval.length) {
      throw new DimensionMismatchException(xval.length, yval.length);
    }

    final int n = xval.length;

    if (n == 0) {
      throw new NoDataException();
    }

    checkAllFiniteReal(xval);
    checkAllFiniteReal(yval);
    checkAllFiniteReal(weights);

    MathArrays.checkOrder(xval);

    if (n == 1) {
      return new double[] {yval[0]};
    }

    if (n == 2) {
      return new double[] {yval[0], yval[1]};
    }

    int bandwidthInPoints = (int) (bandwidth * n);

    if (bandwidthInPoints < 2) {
      throw new NumberIsTooSmallException(LocalizedFormats.BANDWIDTH, bandwidthInPoints, 2, true);
    }

    final double[] res = new double[n];

    final double[] residuals = new double[n];
    final double[] sortedResiduals = new double[n];

    final double[] robustnessWeights = new double[n];

    // Do an initial fit and 'robustnessIters' robustness iterations.
    // This is equivalent to doing 'robustnessIters+1' robustness iterations
    // starting with all robustness weights set to 1.
    Arrays.fill(robustnessWeights, 1);

    for (int iter = 0; iter <= robustnessIters; ++iter) {
      final int[] bandwidthInterval = {0, bandwidthInPoints - 1};
      // At each x, compute a local weighted linear regression
      for (int i = 0; i < n; ++i) {
        final double x = xval[i];

        // Find out the interval of source points on which
        // a regression is to be made.
        if (i > 0) {
          updateBandwidthInterval(xval, weights, i, bandwidthInterval);
        }

        final int ileft = bandwidthInterval[0];
        final int iright = bandwidthInterval[1];

        // Compute the point of the bandwidth interval that is
        // farthest from x
        final int edge;
        if (xval[i] - xval[ileft] > xval[iright] - xval[i]) {
          edge = ileft;
        } else {
          edge = iright;
        }

        // Compute a least-squares linear fit weighted by
        // the product of robustness weights and the tricube
        // weight function.
        // See http://en.wikipedia.org/wiki/Linear_regression
        // (section "Univariate linear case")
        // and http://en.wikipedia.org/wiki/Weighted_least_squares
        // (section "Weighted least squares")
        double sumWeights = 0;
        double sumX = 0;
        double sumXSquared = 0;
        double sumY = 0;
        double sumXY = 0;
        double denom = FastMath.abs(1.0 / (xval[edge] - x));
        for (int k = ileft; k <= iright; ++k) {
          final double xk = xval[k];
          final double yk = yval[k];
          final double dist = (k < i) ? x - xk : xk - x;
          final double w = tricube(dist * denom) * robustnessWeights[k] * weights[k];
          final double xkw = xk * w;
          sumWeights += w;
          sumX += xkw;
          sumXSquared += xk * xkw;
          sumY += yk * w;
          sumXY += yk * xkw;
        }

        final double meanX = sumX / sumWeights;
        final double meanY = sumY / sumWeights;
        final double meanXY = sumXY / sumWeights;
        final double meanXSquared = sumXSquared / sumWeights;

        final double beta;
        if (FastMath.sqrt(FastMath.abs(meanXSquared - meanX * meanX)) < accuracy) {
          beta = 0;
        } else {
          beta = (meanXY - meanX * meanY) / (meanXSquared - meanX * meanX);
        }

        final double alpha = meanY - beta * meanX;

        res[i] = beta * x + alpha;
        residuals[i] = FastMath.abs(yval[i] - res[i]);
      }

      // No need to recompute the robustness weights at the last
      // iteration, they won't be needed anymore
      if (iter == robustnessIters) {
        break;
      }

      // Recompute the robustness weights.

      // Find the median residual.
      // An arraycopy and a sort are completely tractable here,
      // because the preceding loop is a lot more expensive
      System.arraycopy(residuals, 0, sortedResiduals, 0, n);
      Arrays.sort(sortedResiduals);
      final double medianResidual = sortedResiduals[n / 2];

      if (FastMath.abs(medianResidual) < accuracy) {
        break;
      }

      for (int i = 0; i < n; ++i) {
        final double arg = residuals[i] / (6 * medianResidual);
        if (arg >= 1) {
          robustnessWeights[i] = 0;
        } else {
          final double w = 1 - arg * arg;
          robustnessWeights[i] = w * w;
        }
      }
    }

    return res;
  }
예제 #6
0
  private void appendValues(float[] incomingX, float[] incomingY, float[] incomingZ, double[] ts) {
    if (this._currentIndex + ts.length > BUFFER_SIZE) {
      int shift = this._currentIndex + ts.length - BUFFER_SIZE;

      for (int i = 0; i < BUFFER_SIZE - shift; i++) {
        _xValues[i] = _xValues[i + shift];
        _yValues[i] = _yValues[i + shift];
        _zValues[i] = _zValues[i + shift];
        _timestamps[i] = _timestamps[i + shift];
      }

      int offset = BUFFER_SIZE - shift;

      for (int i = 0; i < ts.length; i++) {
        _xValues[offset + i] = (double) incomingX[i];
        _yValues[offset + i] = (double) incomingY[i];
        _zValues[offset + i] = (double) incomingZ[i];
        _timestamps[offset + i] = ts[i] / 1000;
      }

      this._currentIndex = offset + ts.length; // Should be BUFFER_SIZE
    } else {
      for (int i = 0; i < ts.length; i++) {
        _xValues[this._currentIndex + i] = (double) incomingX[i];
        _yValues[this._currentIndex + i] = (double) incomingY[i];
        _zValues[this._currentIndex + i] = (double) incomingZ[i];
        _timestamps[this._currentIndex + i] = ts[i] / 1000;
      }

      this._currentIndex += ts.length;
    }

    // Log.e("PR", "Raw Timestamp: " + ts[ts.length-1]);

    ArrayList<Reading> readings = new ArrayList<>();

    for (int i = 0; i < this._currentIndex; i++) {
      readings.add(new Reading(_timestamps[i], _xValues[i], _yValues[i], _zValues[i]));
    }

    boolean ordered = false;

    while (ordered == false) {
      try {
        Collections.sort(
            readings,
            new Comparator<Reading>() {
              public int compare(Reading one, Reading two) {
                if ((two.t - one.t) > 0) return -1;
                else if ((two.t - one.t) < 0) return 1;

                return 0;
              }
            });

        double[] testTimestamps = new double[readings.size()];

        for (int i = 0; i < readings.size(); i++) {
          Reading r = readings.get(i);

          testTimestamps[i] = r.t;

          if (i > 1 && testTimestamps[i] == testTimestamps[i - 1]) {
            double newTime = (testTimestamps[i - 2] + testTimestamps[i]) / 2;

            testTimestamps[i - 1] = newTime;
            readings.get(i - 1).t = newTime;
          }
        }

        MathArrays.checkOrder(testTimestamps);

        ordered = true;

        for (int i = 0; i < readings.size(); i++) {
          Reading r = readings.get(i);

          _timestamps[i] = r.t;
          _xValues[i] = r.x;
          _yValues[i] = r.y;
          _zValues[i] = r.z;
        }
      } catch (NonMonotonicSequenceException e) {
        e.printStackTrace();
      }
    }
  }