public void operateOnPartition(
      PartitionDefinition definition, RowIterator inputIterator, RowEmitter outputEmitter) {
    errorHandler.enterOperateOnPartition(definition, inputIterator, outputEmitter);

    try {
      // Collect input rows for observed and expected values
      ArrayList<Double> expectedList = new ArrayList<Double>();
      ArrayList<Long> observedList = new ArrayList<Long>();

      while (inputIterator.advanceToNextRow()) {
        errorHandler.enterOperateOnRow(inputIterator, outputEmitter);
        if (inputIterator.isNullAt(observedArgumentIdx)
            || inputIterator.isNullAt(expectedArgumentIdx))
          throw new IllegalArgumentException("observed and expected values cannot be null");

        expectedList.add(inputIterator.getDoubleAt(expectedArgumentIdx));
        observedList.add(inputIterator.getLongAt(observedArgumentIdx));
        errorHandler.exitOperateOnRow();
      }

      double[] expected = new double[expectedList.size()];
      for (int i = 0; i < expected.length; i++) expected[i] = expectedList.get(i);

      long[] observed = new long[observedList.size()];
      for (int i = 0; i < observed.length; i++) observed[i] = observedList.get(i);

      // Run test
      double pValue = chiSquareTest.chiSquareTest(expected, observed);

      // Emit result
      accumulator.emit(inputIterator, outputEmitter);
      outputEmitter.addDouble(pValue);
      outputEmitter.emitRow();
    } catch (IllegalArgumentException e) {
      errorHandler.catchException(e);
      return; // End this partition and go to next if stopOnError is set to false (otherwise
      // exception is thrown)
    }

    errorHandler.exitOperateOnPartition();
  }
예제 #2
0
  /**
   * Verifies that nextPoisson(mean) generates an empirical distribution of values consistent with
   * PoissonDistributionImpl by generating 1000 values, computing a grouped frequency distribution
   * of the observed values and comparing this distribution to the corresponding expected
   * distribution computed using PoissonDistributionImpl. Uses ChiSquare test of goodness of fit to
   * evaluate the null hypothesis that the distributions are the same. If the null hypothesis can be
   * rejected with confidence 1 - alpha, the check fails.
   */
  public void checkNextPoissonConsistency(double mean) {
    // Generate sample values
    final int sampleSize = 1000; // Number of deviates to generate
    final int minExpectedCount = 7; // Minimum size of expected bin count
    long maxObservedValue = 0;
    final double alpha = 0.001; // Probability of false failure
    Frequency frequency = new Frequency();
    for (int i = 0; i < sampleSize; i++) {
      long value = randomData.nextPoisson(mean);
      if (value > maxObservedValue) {
        maxObservedValue = value;
      }
      frequency.addValue(value);
    }

    /*
     *  Set up bins for chi-square test.
     *  Ensure expected counts are all at least minExpectedCount.
     *  Start with upper and lower tail bins.
     *  Lower bin = [0, lower); Upper bin = [upper, +inf).
     */
    PoissonDistribution poissonDistribution = new PoissonDistribution(mean);
    int lower = 1;
    while (poissonDistribution.cumulativeProbability(lower - 1) * sampleSize < minExpectedCount) {
      lower++;
    }
    int upper = (int) (5 * mean); // Even for mean = 1, not much mass beyond 5
    while ((1 - poissonDistribution.cumulativeProbability(upper - 1)) * sampleSize
        < minExpectedCount) {
      upper--;
    }

    // Set bin width for interior bins.  For poisson, only need to look at end bins.
    int binWidth = 0;
    boolean widthSufficient = false;
    double lowerBinMass = 0;
    double upperBinMass = 0;
    while (!widthSufficient) {
      binWidth++;
      lowerBinMass = poissonDistribution.cumulativeProbability(lower - 1, lower + binWidth - 1);
      upperBinMass = poissonDistribution.cumulativeProbability(upper - binWidth - 1, upper - 1);
      widthSufficient = FastMath.min(lowerBinMass, upperBinMass) * sampleSize >= minExpectedCount;
    }

    /*
     *  Determine interior bin bounds.  Bins are
     *  [1, lower = binBounds[0]), [lower, binBounds[1]), [binBounds[1], binBounds[2]), ... ,
     *    [binBounds[binCount - 2], upper = binBounds[binCount - 1]), [upper, +inf)
     *
     */
    List<Integer> binBounds = new ArrayList<Integer>();
    binBounds.add(lower);
    int bound = lower + binWidth;
    while (bound < upper - binWidth) {
      binBounds.add(bound);
      bound += binWidth;
    }
    binBounds.add(
        upper); // The size of bin [binBounds[binCount - 2], upper) satisfies binWidth <= size <
                // 2*binWidth.

    // Compute observed and expected bin counts
    final int binCount = binBounds.size() + 1;
    long[] observed = new long[binCount];
    double[] expected = new double[binCount];

    // Bottom bin
    observed[0] = 0;
    for (int i = 0; i < lower; i++) {
      observed[0] += frequency.getCount(i);
    }
    expected[0] = poissonDistribution.cumulativeProbability(lower - 1) * sampleSize;

    // Top bin
    observed[binCount - 1] = 0;
    for (int i = upper; i <= maxObservedValue; i++) {
      observed[binCount - 1] += frequency.getCount(i);
    }
    expected[binCount - 1] =
        (1 - poissonDistribution.cumulativeProbability(upper - 1)) * sampleSize;

    // Interior bins
    for (int i = 1; i < binCount - 1; i++) {
      observed[i] = 0;
      for (int j = binBounds.get(i - 1); j < binBounds.get(i); j++) {
        observed[i] += frequency.getCount(j);
      } // Expected count is (mass in [binBounds[i-1], binBounds[i])) * sampleSize
      expected[i] =
          (poissonDistribution.cumulativeProbability(binBounds.get(i) - 1)
                  - poissonDistribution.cumulativeProbability(binBounds.get(i - 1) - 1))
              * sampleSize;
    }

    // Use chisquare test to verify that generated values are poisson(mean)-distributed
    ChiSquareTest chiSquareTest = new ChiSquareTest();
    // Fail if we can reject null hypothesis that distributions are the same
    if (chiSquareTest.chiSquareTest(expected, observed, alpha)) {
      StringBuilder msgBuffer = new StringBuilder();
      DecimalFormat df = new DecimalFormat("#.##");
      msgBuffer.append("Chisquare test failed for mean = ");
      msgBuffer.append(mean);
      msgBuffer.append(" p-value = ");
      msgBuffer.append(chiSquareTest.chiSquareTest(expected, observed));
      msgBuffer.append(" chisquare statistic = ");
      msgBuffer.append(chiSquareTest.chiSquare(expected, observed));
      msgBuffer.append(". \n");
      msgBuffer.append("bin\t\texpected\tobserved\n");
      for (int i = 0; i < expected.length; i++) {
        msgBuffer.append("[");
        msgBuffer.append(i == 0 ? 1 : binBounds.get(i - 1));
        msgBuffer.append(",");
        msgBuffer.append(i == binBounds.size() ? "inf" : binBounds.get(i));
        msgBuffer.append(")");
        msgBuffer.append("\t\t");
        msgBuffer.append(df.format(expected[i]));
        msgBuffer.append("\t\t");
        msgBuffer.append(observed[i]);
        msgBuffer.append("\n");
      }
      msgBuffer.append("This test can fail randomly due to sampling error with probability ");
      msgBuffer.append(alpha);
      msgBuffer.append(".");
      Assert.fail(msgBuffer.toString());
    }
  }