@Override public void computeDerivatives(double t, double[] y, double[] yDot) throws MaxCountExceededException, DimensionMismatchException { int params = 1; int order = 1; DerivativeStructure x = new DerivativeStructure(params, order, 0, y[0]); DerivativeStructure f = x.divide(t); yDot[0] = f.getValue(); }
/** * Compute the n-SUM for potential derivatives components. * * @param date current date * @param j resonant index <i>j</i> * @param m resonant order <i>m</i> * @param s d'Alembert characteristic <i>s</i> * @param maxN maximum possible value for <i>n</i> index * @param roaPow powers of R/a up to degree <i>n</i> * @param ghMSJ G<sup>j</sup><sub>m,s</sub> and H<sup>j</sup><sub>m,s</sub> polynomials * @param gammaMNS Γ<sup>m</sup><sub>n,s</sub>(γ) function * @return Components of U<sub>n</sub> derivatives for fixed j, m, s * @throws OrekitException if some error occurred */ private double[][] computeNSum( final AbsoluteDate date, final int j, final int m, final int s, final int maxN, final double[] roaPow, final GHmsjPolynomials ghMSJ, final GammaMnsFunction gammaMNS) throws OrekitException { // spherical harmonics final UnnormalizedSphericalHarmonics harmonics = provider.onDate(date); // Potential derivatives components double dUdaCos = 0.; double dUdaSin = 0.; double dUdhCos = 0.; double dUdhSin = 0.; double dUdkCos = 0.; double dUdkSin = 0.; double dUdlCos = 0.; double dUdlSin = 0.; double dUdAlCos = 0.; double dUdAlSin = 0.; double dUdBeCos = 0.; double dUdBeSin = 0.; double dUdGaCos = 0.; double dUdGaSin = 0.; // I^m final int Im = I > 0 ? 1 : (m % 2 == 0 ? 1 : -1); // jacobi v, w, indices from 2.7.1-(15) final int v = FastMath.abs(m - s); final int w = FastMath.abs(m + s); // Initialise lower degree nmin = (Max(2, m, |s|)) for summation over n final int nmin = FastMath.max(FastMath.max(2, m), FastMath.abs(s)); // Get the corresponding Hansen object final int sIndex = maxDegree + (j < 0 ? -s : s); final int jIndex = FastMath.abs(j); final HansenTesseralLinear hans = this.hansenObjects[sIndex][jIndex]; // n-SUM from nmin to N for (int n = nmin; n <= maxN; n++) { // If (n - s) is odd, the contribution is null because of Vmns if ((n - s) % 2 == 0) { // Vmns coefficient final double fns = fact[n + FastMath.abs(s)]; final double vMNS = CoefficientsFactory.getVmns(m, n, s, fns, fact[n - m]); // Inclination function Gamma and derivative final double gaMNS = gammaMNS.getValue(m, n, s); final double dGaMNS = gammaMNS.getDerivative(m, n, s); // Hansen kernel value and derivative final double kJNS = hans.getValue(-n - 1, chi); final double dkJNS = hans.getDerivative(-n - 1, chi); // Gjms, Hjms polynomials and derivatives final double gMSJ = ghMSJ.getGmsj(m, s, j); final double hMSJ = ghMSJ.getHmsj(m, s, j); final double dGdh = ghMSJ.getdGmsdh(m, s, j); final double dGdk = ghMSJ.getdGmsdk(m, s, j); final double dGdA = ghMSJ.getdGmsdAlpha(m, s, j); final double dGdB = ghMSJ.getdGmsdBeta(m, s, j); final double dHdh = ghMSJ.getdHmsdh(m, s, j); final double dHdk = ghMSJ.getdHmsdk(m, s, j); final double dHdA = ghMSJ.getdHmsdAlpha(m, s, j); final double dHdB = ghMSJ.getdHmsdBeta(m, s, j); // Jacobi l-index from 2.7.1-(15) final int l = FastMath.min(n - m, n - FastMath.abs(s)); // Jacobi polynomial and derivative final DerivativeStructure jacobi = JacobiPolynomials.getValue(l, v, w, new DerivativeStructure(1, 1, 0, gamma)); // Geopotential coefficients final double cnm = harmonics.getUnnormalizedCnm(n, m); final double snm = harmonics.getUnnormalizedSnm(n, m); // Common factors from expansion of equations 3.3-4 final double cf_0 = roaPow[n] * Im * vMNS; final double cf_1 = cf_0 * gaMNS * jacobi.getValue(); final double cf_2 = cf_1 * kJNS; final double gcPhs = gMSJ * cnm + hMSJ * snm; final double gsMhc = gMSJ * snm - hMSJ * cnm; final double dKgcPhsx2 = 2. * dkJNS * gcPhs; final double dKgsMhcx2 = 2. * dkJNS * gsMhc; final double dUdaCoef = (n + 1) * cf_2; final double dUdlCoef = j * cf_2; final double dUdGaCoef = cf_0 * kJNS * (jacobi.getValue() * dGaMNS + gaMNS * jacobi.getPartialDerivative(1)); // dU / da components dUdaCos += dUdaCoef * gcPhs; dUdaSin += dUdaCoef * gsMhc; // dU / dh components dUdhCos += cf_1 * (kJNS * (cnm * dGdh + snm * dHdh) + h * dKgcPhsx2); dUdhSin += cf_1 * (kJNS * (snm * dGdh - cnm * dHdh) + h * dKgsMhcx2); // dU / dk components dUdkCos += cf_1 * (kJNS * (cnm * dGdk + snm * dHdk) + k * dKgcPhsx2); dUdkSin += cf_1 * (kJNS * (snm * dGdk - cnm * dHdk) + k * dKgsMhcx2); // dU / dLambda components dUdlCos += dUdlCoef * gsMhc; dUdlSin += -dUdlCoef * gcPhs; // dU / alpha components dUdAlCos += cf_2 * (dGdA * cnm + dHdA * snm); dUdAlSin += cf_2 * (dGdA * snm - dHdA * cnm); // dU / dBeta components dUdBeCos += cf_2 * (dGdB * cnm + dHdB * snm); dUdBeSin += cf_2 * (dGdB * snm - dHdB * cnm); // dU / dGamma components dUdGaCos += dUdGaCoef * gcPhs; dUdGaSin += dUdGaCoef * gsMhc; } } return new double[][] { {dUdaCos, dUdaSin}, {dUdhCos, dUdhSin}, {dUdkCos, dUdkSin}, {dUdlCos, dUdlSin}, {dUdAlCos, dUdAlSin}, {dUdBeCos, dUdBeSin}, {dUdGaCos, dUdGaSin} }; }