public void testNaNs() { SimpleRegression regression = new SimpleRegression(); assertTrue("intercept not NaN", Double.isNaN(regression.getIntercept())); assertTrue("slope not NaN", Double.isNaN(regression.getSlope())); assertTrue("slope std err not NaN", Double.isNaN(regression.getSlopeStdErr())); assertTrue("intercept std err not NaN", Double.isNaN(regression.getInterceptStdErr())); assertTrue("MSE not NaN", Double.isNaN(regression.getMeanSquareError())); assertTrue("e not NaN", Double.isNaN(regression.getR())); assertTrue("r-square not NaN", Double.isNaN(regression.getRSquare())); assertTrue("RSS not NaN", Double.isNaN(regression.getRegressionSumSquares())); assertTrue("SSE not NaN", Double.isNaN(regression.getSumSquaredErrors())); assertTrue("SSTO not NaN", Double.isNaN(regression.getTotalSumSquares())); assertTrue("predict not NaN", Double.isNaN(regression.predict(0))); regression.addData(1, 2); regression.addData(1, 3); // No x variation, so these should still blow... assertTrue("intercept not NaN", Double.isNaN(regression.getIntercept())); assertTrue("slope not NaN", Double.isNaN(regression.getSlope())); assertTrue("slope std err not NaN", Double.isNaN(regression.getSlopeStdErr())); assertTrue("intercept std err not NaN", Double.isNaN(regression.getInterceptStdErr())); assertTrue("MSE not NaN", Double.isNaN(regression.getMeanSquareError())); assertTrue("e not NaN", Double.isNaN(regression.getR())); assertTrue("r-square not NaN", Double.isNaN(regression.getRSquare())); assertTrue("RSS not NaN", Double.isNaN(regression.getRegressionSumSquares())); assertTrue("SSE not NaN", Double.isNaN(regression.getSumSquaredErrors())); assertTrue("predict not NaN", Double.isNaN(regression.predict(0))); // but SSTO should be OK assertTrue("SSTO NaN", !Double.isNaN(regression.getTotalSumSquares())); regression = new SimpleRegression(); regression.addData(1, 2); regression.addData(3, 3); // All should be OK except MSE, s(b0), s(b1) which need one more df assertTrue("interceptNaN", !Double.isNaN(regression.getIntercept())); assertTrue("slope NaN", !Double.isNaN(regression.getSlope())); assertTrue("slope std err not NaN", Double.isNaN(regression.getSlopeStdErr())); assertTrue("intercept std err not NaN", Double.isNaN(regression.getInterceptStdErr())); assertTrue("MSE not NaN", Double.isNaN(regression.getMeanSquareError())); assertTrue("r NaN", !Double.isNaN(regression.getR())); assertTrue("r-square NaN", !Double.isNaN(regression.getRSquare())); assertTrue("RSS NaN", !Double.isNaN(regression.getRegressionSumSquares())); assertTrue("SSE NaN", !Double.isNaN(regression.getSumSquaredErrors())); assertTrue("SSTO NaN", !Double.isNaN(regression.getTotalSumSquares())); assertTrue("predict NaN", !Double.isNaN(regression.predict(0))); regression.addData(1, 4); // MSE, MSE, s(b0), s(b1) should all be OK now assertTrue("MSE NaN", !Double.isNaN(regression.getMeanSquareError())); assertTrue("slope std err NaN", !Double.isNaN(regression.getSlopeStdErr())); assertTrue("intercept std err NaN", !Double.isNaN(regression.getInterceptStdErr())); }
public void testInference() throws Exception { // ---------- verified against R, version 1.8.1 ----- // infData SimpleRegression regression = new SimpleRegression(); regression.addData(infData); assertEquals("slope std err", 0.011448491, regression.getSlopeStdErr(), 1E-10); assertEquals("std err intercept", 0.286036932, regression.getInterceptStdErr(), 1E-8); assertEquals("significance", 4.596e-07, regression.getSignificance(), 1E-8); assertEquals( "slope conf interval half-width", 0.0270713794287, regression.getSlopeConfidenceInterval(), 1E-8); // infData2 regression = new SimpleRegression(); regression.addData(infData2); assertEquals("slope std err", 1.07260253, regression.getSlopeStdErr(), 1E-8); assertEquals("std err intercept", 4.17718672, regression.getInterceptStdErr(), 1E-8); assertEquals("significance", 0.261829133982, regression.getSignificance(), 1E-11); assertEquals( "slope conf interval half-width", 2.97802204827, regression.getSlopeConfidenceInterval(), 1E-8); // ------------- End R-verified tests ------------------------------- // FIXME: get a real example to test against with alpha = .01 assertTrue( "tighter means wider", regression.getSlopeConfidenceInterval() < regression.getSlopeConfidenceInterval(0.01)); try { regression.getSlopeConfidenceInterval(1); fail("expecting IllegalArgumentException for alpha = 1"); } catch (IllegalArgumentException ex) { // ignored } }
// Test remove multiple observations public void testRemoveMultiple() throws Exception { // Create regression with inference data then remove to test SimpleRegression regression = new SimpleRegression(); regression.addData(infData); regression.removeData(removeMultiple); regression.addData(removeMultiple); // Use the inference assertions to make sure that everything worked assertEquals("slope std err", 0.011448491, regression.getSlopeStdErr(), 1E-10); assertEquals("std err intercept", 0.286036932, regression.getInterceptStdErr(), 1E-8); assertEquals("significance", 4.596e-07, regression.getSignificance(), 1E-8); assertEquals( "slope conf interval half-width", 0.0270713794287, regression.getSlopeConfidenceInterval(), 1E-8); }
public void testNorris() { SimpleRegression regression = new SimpleRegression(); for (int i = 0; i < data.length; i++) { regression.addData(data[i][1], data[i][0]); } // Tests against certified values from // http://www.itl.nist.gov/div898/strd/lls/data/LINKS/DATA/Norris.dat assertEquals("slope", 1.00211681802045, regression.getSlope(), 10E-12); assertEquals("slope std err", 0.429796848199937E-03, regression.getSlopeStdErr(), 10E-12); assertEquals("number of observations", 36, regression.getN()); assertEquals("intercept", -0.262323073774029, regression.getIntercept(), 10E-12); assertEquals("std err intercept", 0.232818234301152, regression.getInterceptStdErr(), 10E-12); assertEquals("r-square", 0.999993745883712, regression.getRSquare(), 10E-12); assertEquals("SSR", 4255954.13232369, regression.getRegressionSumSquares(), 10E-9); assertEquals("MSE", 0.782864662630069, regression.getMeanSquareError(), 10E-10); assertEquals("SSE", 26.6173985294224, regression.getSumSquaredErrors(), 10E-9); // ------------ End certified data tests assertEquals("predict(0)", -0.262323073774029, regression.predict(0), 10E-12); assertEquals("predict(1)", 1.00211681802045 - 0.262323073774029, regression.predict(1), 10E-12); }