/** * Evaluate all the non-evaluated points of the simplex. * * @param comparator comparator to use to sort simplex vertices from best to worst * @exception FunctionEvaluationException if no value can be computed for the parameters * @exception OptimizationException if the maximal number of evaluations is exceeded */ protected void evaluateSimplex(final Comparator<RealPointValuePair> comparator) throws FunctionEvaluationException, OptimizationException { // evaluate the objective function at all non-evaluated simplex points for (int i = 0; i < simplex.length; ++i) { final RealPointValuePair vertex = simplex[i]; final double[] point = vertex.getPointRef(); if (Double.isNaN(vertex.getValue())) { simplex[i] = new RealPointValuePair(point, evaluate(point), false); } } // sort the simplex from best to worst Arrays.sort(simplex, comparator); }
/** {@inheritDoc} */ @Override protected void iterateSimplex(final Comparator<RealPointValuePair> comparator) throws FunctionEvaluationException, OptimizationException { incrementIterationsCounter(); // the simplex has n+1 point if dimension is n final int n = simplex.length - 1; // interesting values final RealPointValuePair best = simplex[0]; final RealPointValuePair secondBest = simplex[n - 1]; final RealPointValuePair worst = simplex[n]; final double[] xWorst = worst.getPointRef(); // compute the centroid of the best vertices // (dismissing the worst point at index n) final double[] centroid = new double[n]; for (int i = 0; i < n; ++i) { final double[] x = simplex[i].getPointRef(); for (int j = 0; j < n; ++j) { centroid[j] += x[j]; } } final double scaling = 1.0 / n; for (int j = 0; j < n; ++j) { centroid[j] *= scaling; } // compute the reflection point final double[] xR = new double[n]; for (int j = 0; j < n; ++j) { xR[j] = centroid[j] + rho * (centroid[j] - xWorst[j]); } final RealPointValuePair reflected = new RealPointValuePair(xR, evaluate(xR), false); if ((comparator.compare(best, reflected) <= 0) && (comparator.compare(reflected, secondBest) < 0)) { // accept the reflected point replaceWorstPoint(reflected, comparator); } else if (comparator.compare(reflected, best) < 0) { // compute the expansion point final double[] xE = new double[n]; for (int j = 0; j < n; ++j) { xE[j] = centroid[j] + khi * (xR[j] - centroid[j]); } final RealPointValuePair expanded = new RealPointValuePair(xE, evaluate(xE), false); if (comparator.compare(expanded, reflected) < 0) { // accept the expansion point replaceWorstPoint(expanded, comparator); } else { // accept the reflected point replaceWorstPoint(reflected, comparator); } } else { if (comparator.compare(reflected, worst) < 0) { // perform an outside contraction final double[] xC = new double[n]; for (int j = 0; j < n; ++j) { xC[j] = centroid[j] + gamma * (xR[j] - centroid[j]); } final RealPointValuePair outContracted = new RealPointValuePair(xC, evaluate(xC), false); if (comparator.compare(outContracted, reflected) <= 0) { // accept the contraction point replaceWorstPoint(outContracted, comparator); return; } } else { // perform an inside contraction final double[] xC = new double[n]; for (int j = 0; j < n; ++j) { xC[j] = centroid[j] - gamma * (centroid[j] - xWorst[j]); } final RealPointValuePair inContracted = new RealPointValuePair(xC, evaluate(xC), false); if (comparator.compare(inContracted, worst) < 0) { // accept the contraction point replaceWorstPoint(inContracted, comparator); return; } } // perform a shrink final double[] xSmallest = simplex[0].getPointRef(); for (int i = 1; i < simplex.length; ++i) { final double[] x = simplex[i].getPoint(); for (int j = 0; j < n; ++j) { x[j] = xSmallest[j] + sigma * (x[j] - xSmallest[j]); } simplex[i] = new RealPointValuePair(x, Double.NaN, false); } evaluateSimplex(comparator); } }