/** * tests the value of a constant polynomial. * * <p>value of this is 2.5 everywhere. */ public void testConstants() throws MathException { double[] c = {2.5}; PolynomialFunction f = new PolynomialFunction(c); // verify that we are equal to c[0] at several (nonsymmetric) places assertEquals(f.value(0.0), c[0], tolerance); assertEquals(f.value(-1.0), c[0], tolerance); assertEquals(f.value(-123.5), c[0], tolerance); assertEquals(f.value(3.0), c[0], tolerance); assertEquals(f.value(456.89), c[0], tolerance); assertEquals(f.degree(), 0); assertEquals(f.derivative().value(0), 0, tolerance); assertEquals(f.polynomialDerivative().derivative().value(0), 0, tolerance); }
/** * tests the value of a linear polynomial. * * <p>This will test the function f(x) = 3*x - 1.5 * * <p>This will have the values <tt>f(0.0) = -1.5, f(-1.0) = -4.5, f(-2.5) = -9.0, f(0.5) = 0.0, * f(1.5) = 3.0</tt> and <tt>f(3.0) = 7.5</tt> */ public void testLinear() throws MathException { double[] c = {-1.5, 3.0}; PolynomialFunction f = new PolynomialFunction(c); // verify that we are equal to c[0] when x=0 assertEquals(f.value(0.0), c[0], tolerance); // now check a few other places assertEquals(-4.5, f.value(-1.0), tolerance); assertEquals(-9.0, f.value(-2.5), tolerance); assertEquals(0.0, f.value(0.5), tolerance); assertEquals(3.0, f.value(1.5), tolerance); assertEquals(7.5, f.value(3.0), tolerance); assertEquals(f.degree(), 1); assertEquals(f.polynomialDerivative().derivative().value(0), 0, tolerance); }