protected void computeAdvanced(final long startPos, final long loopSize) { final LocalizableByDimCursor<S> cursorIn = image.createLocalizableByDimCursor(); final LocalizableCursor<T> cursorOut = output.createLocalizableCursor(); // move to the starting position of the current thread cursorOut.fwd(startPos); // do as many pixels as wanted by this thread for (long j = 0; j < loopSize; ++j) { cursorOut.fwd(); cursorIn.setPosition(cursorOut); converter.convert(cursorIn.getType(), cursorOut.getType()); } cursorIn.close(); cursorOut.close(); }
@Override public boolean process() { floatImage = null; if (output == null) { output = new Labeling<L>(labelingFactory, input.getDimensions(), null); } else { /* * Initialize the output to all background */ LocalizableCursor<LabelingType<L>> c = output.createLocalizableCursor(); List<L> background = c.getType().intern(new ArrayList<L>()); for (LabelingType<L> t : c) { t.setLabeling(background); } c.close(); } /* * Get the smoothed image. */ Image<FloatType> kernel = FourierConvolution.createGaussianKernel(input.getContainerFactory(), scale); FourierConvolution<FloatType, FloatType> convolution = new FourierConvolution<FloatType, FloatType>(getFloatImage(), kernel); if (!convolution.process()) return false; Image<FloatType> smoothed = convolution.getResult(); /* * Find the local maxima and label them individually. */ PickImagePeaks<FloatType> peakPicker = new PickImagePeaks<FloatType>(smoothed); peakPicker.setSuppression(scale); peakPicker.process(); Labeling<L> seeds = output.createNewLabeling(); LocalizableByDimCursor<LabelingType<L>> lc = seeds.createLocalizableByDimCursor(); LocalizableByDimCursor<FloatType> imageCursor = smoothed.createLocalizableByDimCursor(); int[] dimensions = input.getDimensions(); for (int[] peak : peakPicker.getPeakList()) { if (!filterPeak(imageCursor, peak, dimensions, false)) continue; lc.setPosition(peak); lc.getType().setLabel(names.next()); } imageCursor.close(); /* * Find the local minima and label them all the same. */ List<L> background = lc.getType().intern(names.next()); Converter<FloatType, FloatType> invert = new Converter<FloatType, FloatType>() { @Override public void convert(FloatType input, FloatType output) { output.setReal(-input.getRealFloat()); } }; ImageConverter<FloatType, FloatType> invSmoothed = new ImageConverter<FloatType, FloatType>(smoothed, smoothed, invert); invSmoothed.process(); peakPicker = new PickImagePeaks<FloatType>(smoothed); peakPicker.setSuppression(scale); peakPicker.process(); imageCursor = smoothed.createLocalizableByDimCursor(); for (int[] peak : peakPicker.getPeakList()) { if (!filterPeak(imageCursor, peak, dimensions, true)) continue; lc.setPosition(peak); lc.getType().setLabeling(background); } lc.close(); imageCursor.close(); smoothed = null; invSmoothed = null; Image<FloatType> gradientImage = getGradientImage(); if (gradientImage == null) return false; /* * Run the seeded watershed on the image. */ Watershed.seededWatershed(gradientImage, seeds, structuringElement, output); return true; }