예제 #1
1
  public test2O(String[] args) throws Exception {

    int numtask, taskid, rc;
    test outmsg[] = new test[1];
    test inmsg[] = new test[1];
    int i, dest = 0, type = 1;
    int source, rtype = type, rbytes = -1, flag, dontcare = -1;
    int msgid;
    Status status;
    Request req;

    MPI.Init(args);
    taskid = MPI.COMM_WORLD.Rank();
    numtask = MPI.COMM_WORLD.Size();

    if (numtask > 2) {
      if (taskid == 0) {
        System.out.println("test2O must run with less than 8 tasks");
      }
      MPI.Finalize();
      return;
    }

    if (taskid == 1) {
      MPI.COMM_WORLD.Barrier();
      outmsg[0] = new test();
      outmsg[0].a = 5;
      type = 1;
      MPI.COMM_WORLD.Send(outmsg, 0, 1, MPI.OBJECT, dest, type);
    }

    if (taskid == 0) {
      source = MPI.ANY_SOURCE;
      rtype = MPI.ANY_TAG;
      req = MPI.COMM_WORLD.Irecv(inmsg, 0, 1, MPI.OBJECT, source, rtype);

      status = req.Test();
      if (status != null) System.out.println("ERROR(1)");
      MPI.COMM_WORLD.Barrier();

      status = req.Wait();
      if (inmsg[0].a != 5 || status.source != 1 || status.tag != 1) {
        System.out.println("ERROR(2)");
        System.out.println(" inmsg[0].a " + inmsg[0].a);
        System.out.println(" status.source " + status.source);
        System.out.println(" status.tag " + status.source);
      }
    }

    MPI.COMM_WORLD.Barrier();
    if (taskid == 1) System.out.println("Test2O TEST COMPLETE <" + taskid + ">");
    MPI.Finalize();
  }
예제 #2
0
 public static void Send(Object buf, int offset, int count, int type, int dest, int tag)
     throws MPIException, InterruptedException {
   if (mpiRun) {
     Datatype dtype = getDatatype(type);
     MPI.COMM_WORLD.Send(buf, offset, count, dtype, dest, tag);
   } else threadEle.get(Thread.currentThread()).Send(buf, offset, count, type, dest, tag);
 }
예제 #3
0
  public testany(String[] args) throws Exception {

    int me, tasks, i, index, done;
    ;
    int mebuf[] = new int[1];
    boolean flag;

    MPI.Init(args);
    me = MPI.COMM_WORLD.Rank();
    tasks = MPI.COMM_WORLD.Size();

    int data[] = new int[tasks];
    Request req[] = new Request[tasks];
    Status status;

    mebuf[0] = me;
    if (me > 0) MPI.COMM_WORLD.Send(mebuf, 0, 1, MPI.INT, 0, 1);
    else if (me == 0) {
      req[0] = MPI.REQUEST_NULL;
      for (i = 1; i < tasks; i++) req[i] = MPI.COMM_WORLD.Irecv(data, i, 1, MPI.INT, i, 1);

      done = 0;
      while (done < tasks - 1) {
        status = Request.Testany(req);
        if (status != null) {
          done++;
          if (!req[status.index].Is_null())
            System.out.println("ERROR in MPI_Testany: reqest not set to null");
          if (data[status.index] != status.index)
            System.out.println("ERROR in MPI.Testany: wrong data");
        }
      }
    }

    // MPI.COMM_WORLD.Barrier();
    // if(me == 1)
    System.out.println("Testany TEST COMPLETE <" + me + ">");
    MPI.Finalize();
  }
예제 #4
0
  public static void main(String[] args) {

    String inputPrmFile = args[3];
    String inputConfFile = args[4];
    String inputTopFile = args[5];
    String outputTrajFile = args[6];
    String outputEnergyFile = args[7];
    String ITSout = args[8];

    MdSystem<LJParticle> system =
        GromacsImporter.buildLJParticleSystem(
            "JOB_NAME", inputPrmFile, inputConfFile, inputTopFile);

    MdParameter prm = system.getParam();

    final double dt = prm.getDt();
    final int nsteps = prm.getNsteps();
    final int nstlist = prm.getNstlist();
    final int nstxout = prm.getNstxout();
    final int nstvout = prm.getNstvout();
    final int nstenergy = prm.getNstenergy();
    final int nstlog = 10; // prm.getNstlog();
    final double T0 = prm.getT0();
    final double TRef = prm.getRefT();
    final double tauT = prm.getTauT();
    final boolean convertHbonds = prm.convertHbonds();
    if (convertHbonds) {
      system.convertHBondsToConstraints();
    }

    /** ************ ITS setup *************** */
    final int ksize = 12;
    final double Tstep = 25.0; // T increment
    final int ITSEnergyFreq = nstxout; // frequency of energy storing for ITS

    final double[] Temps = new double[ksize];
    final double[] p0 = new double[ksize];

    for (int i = 0; i < ksize; i++) {
      Temps[i] = T0 + i * Tstep;
      p0[i] = 1.0 / ksize;
    }
    /** ************************************* */
    final BigDecimal[] n0 = new BigDecimal[ksize];
    MathContext mathset = new MathContext(5);
    n0[0] = new BigDecimal("5.99880e-03", mathset);
    n0[1] = new BigDecimal("3.64660e+209", mathset);
    n0[2] = new BigDecimal("1.23850e+391", mathset);
    n0[3] = new BigDecimal("2.59790e+548", mathset);
    n0[4] = new BigDecimal("1.21530e+686", mathset);
    n0[5] = new BigDecimal("2.85080e+807", mathset);
    n0[6] = new BigDecimal("2.93170e+915", mathset);
    n0[7] = new BigDecimal("1.33400e+1012", mathset);
    n0[8] = new BigDecimal("1.18050e+1099", mathset);
    n0[9] = new BigDecimal("4.27230e+1177", mathset);
    n0[10] = new BigDecimal("1.70190e+1249", mathset);
    n0[11] = new BigDecimal("2.87210e+1314", mathset);

    // gen valocity
    system.genRandomVelocities(T0);

    /** MPI preparation * */
    MPI.Init(args);
    final int rank = MPI.COMM_WORLD.Rank();
    final int np = MPI.COMM_WORLD.Size();

    Integrator<MdSystem<LJParticle>> integrator = new VelocityVerlet<MdSystem<LJParticle>>(dt);

    FastLJC<MdSystem<LJParticle>> nonbond = new FastLJC<MdSystem<LJParticle>>(system);

    DomainDecomposition<MdSystem<LJParticle>> decomposition =
        new DomainDecomposition<MdSystem<LJParticle>>(system, np);

    Thermostat<MdSystem<LJParticle>> thermostat =
        new BerendsenThermostat<MdSystem<LJParticle>>(TRef, tauT);

    // push initial positions to the new trajectory
    system.forwardPosition(integrator);

    // get partitions using new positions
    system.partition(decomposition);

    Domain domain = decomposition.getDomain(rank);

    DomainNeighborList<MdSystem<LJParticle>> nblist =
        new DomainNeighborList<MdSystem<LJParticle>>(system, domain);

    int SUB_CAPACITY = domain.getCapacity();

    // head node
    if (rank == 0) {

      try {
        PrintStream ps = new PrintStream(outputTrajFile);
        PrintStream psEnergy = new PrintStream(outputEnergyFile);
        PrintStream psITS = new PrintStream(ITSout);

        ITS<MdSystem<LJParticle>> its = new ITS<MdSystem<LJParticle>>(T0, ksize, Temps, p0, n0);
        double Uorg = 0.0;

        for (int tstep = 0; tstep < nsteps; tstep++) {

          if (tstep % nstlog == 0) {
            System.out.println(String.format("Computing t = %5.3f ps", tstep * dt));
          }

          // integrate forward (apply position constraints if applicable)
          if (tstep != 0) {
            system.forwardPosition(integrator);
            system.applyPositionConstraint();
          }

          // (I) update domains and send them to slave nodes
          if (tstep % nstlist == 0) {
            // updates partitions using new positions
            system.partition(decomposition);

            // send updated partition info to slave nodes
            for (int proc = 1; proc < np; proc++) {
              int[] partition = decomposition.exportPartition(proc);
              MPI.COMM_WORLD.Send(partition, 0, SUB_CAPACITY, MPI.INT, proc, 99);
            }
            // update local neighbor list
            nblist.update(system);
          }

          // (II) export new positions to slave nodes
          for (int proc = 1; proc < np; proc++) {
            Domain domainEach = decomposition.getDomain(proc);
            double[] positionArray = system.exportNewPositions(domainEach);

            MPI.COMM_WORLD.Send(positionArray, 0, 3 * SUB_CAPACITY, MPI.DOUBLE, proc, 99);
          }

          // (ITS Step 0 ) compute original energy
          {
            double nonbondEnergy = 0.0;
            nonbondEnergy = system.getNonBondEnergy(nonbond, nblist);
            // receive partial nonbond energies from slave-nodes and add
            for (int proc = 1; proc < np; proc++) {
              double[] partialEnergy = new double[1];

              MPI.COMM_WORLD.Recv(partialEnergy, 0, 1, MPI.DOUBLE, proc, 99);
              nonbondEnergy += partialEnergy[0];
            }
            double coulombEnergy = 0.0; // temporary.
            double bond = system.getBondEnergy();
            double angle = system.getAngleEnergy();
            double dihedral = system.getDihedralEnergy();
            Uorg = nonbondEnergy + bond + angle + dihedral;

            if (tstep % ITSEnergyFreq == 0) {
              its.printEnergy(psITS, system, Uorg);
            }
          }

          // update non-bonded forces
          system.updateNonBondForce(nonbond, nblist);

          // update long-ranged forces

          // update bonded forces
          system.updateBondForce();

          // update angle forces
          system.updateAngleForce();

          // update dihedral forces
          system.updateDihedralForce();

          // (III) receive computed forces from slaves
          for (int proc = 1; proc < np; proc++) {
            double[] forceArray = new double[3 * SUB_CAPACITY];

            MPI.COMM_WORLD.Recv(forceArray, 0, 3 * SUB_CAPACITY, MPI.DOUBLE, proc, 99);

            Domain domainEach = decomposition.getDomain(proc);
            system.importNewForces(domainEach, forceArray);
          }

          // (ITS step 1 ) Apply biasing forces
          its.applyBiasForce(system, Uorg);

          // forward velocities
          system.forwardVelocity(integrator);
          // apply velocity constraints
          system.correctConstraintVelocity();

          // apply temperature coupling
          thermostat.apply(system);

          // print energy (using information in newTraj )
          if (tstep % nstenergy == 0) {
            double nonbondEnergy = 0.0;
            nonbondEnergy = system.getNonBondEnergy(nonbond, nblist);
            // receive partial nonbond energies from slave-nodes and add
            for (int proc = 1; proc < np; proc++) {
              double[] partialEnergy = new double[1];

              MPI.COMM_WORLD.Recv(partialEnergy, 0, 1, MPI.DOUBLE, proc, 99);
              nonbondEnergy += partialEnergy[0];
            }

            double coulombEnergy = 0.0; // temporary.
            mymd.MdIO.printEnergy(system, nonbondEnergy, coulombEnergy, psEnergy);
          }

          // update current trajectories from new trajectories
          system.update();

          if (tstep % nstxout == 0) {
            mymd.MdIO.writeGro(system, ps);
          }
        }

        ps.close();
        psEnergy.close();
      } catch (java.io.IOException ex) {

      }
    }
    // slave nodes
    else {

      decomposition = null;
      String slaveName = String.format("slave-%d", rank);

      /**
       * * change subSystem constructor so it accepts a MdSystem object as an input parameter.
       * SubSystem is needed only if MdSystem object exists. *
       */
      // create a sub-system for slave node
      Trajectory subTraj = new Trajectory(system.getSize());
      subTraj.setBox(system.getBox());
      SubSystem<LJParticle> subsystem =
          new SubSystem.Builder<LJParticle>()
              .name(slaveName)
              .particles(system.getParticles())
              .parameters(system.getParam())
              .topology(system.getTopology())
              .subTrajectory(subTraj)
              .build();

      // mother system is freed. no longer needed for slave nodes
      system = null;

      for (int tstep = 0; tstep < nsteps; tstep++) {

        // (I) receive updated partition info from head node
        if (tstep % nstlist == 0) {
          int[] partition = new int[SUB_CAPACITY];
          MPI.COMM_WORLD.Recv(partition, 0, SUB_CAPACITY, MPI.INT, 0, 99);

          // import received array to its local domain
          domain.importArray(partition);
        }

        // (II) receives new positions
        double[] positionArray = new double[3 * SUB_CAPACITY];
        MPI.COMM_WORLD.Recv(positionArray, 0, SUB_CAPACITY * 3, MPI.DOUBLE, 0, 99);

        // import new positions into the subsystem
        subsystem.importNewPositions(domain, positionArray);

        if (tstep % nstlist == 0) {
          // update local neighbor list
          nblist.update(subsystem);
        }

        // (ITS 0 step)
        double[] partialEnergy = new double[1];
        partialEnergy[0] = subsystem.getNonBondEnergy(nonbond, nblist);

        MPI.COMM_WORLD.Send(partialEnergy, 0, 1, MPI.DOUBLE, 0, 99);

        // compute non-bonded forces
        subsystem.updateNonBondForce(nonbond, nblist);

        // PME

        // (III) export forces and send them to head-node
        double[] forceArray = subsystem.exportNewForces(domain);
        MPI.COMM_WORLD.Send(forceArray, 0, SUB_CAPACITY * 3, MPI.DOUBLE, 0, 99);

        if (tstep % nstenergy == 0) {
          partialEnergy = new double[1];
          partialEnergy[0] = subsystem.getNonBondEnergy(nonbond, nblist);

          MPI.COMM_WORLD.Send(partialEnergy, 0, 1, MPI.DOUBLE, 0, 99);
        }

        // reset force components
        subsystem.update();
      }
    }

    MPI.Finalize();
  }
예제 #5
0
  public scattervO(String[] args) throws Exception {

    final int MAXLEN = 10;

    int myself, tasks;
    MPI.Init(args);
    myself = MPI.COMM_WORLD.Rank();
    tasks = MPI.COMM_WORLD.Size();

    if (tasks > 8) {
      if (myself == 0) System.out.println("scattervO must run with fewer than 8 tasks!");
      MPI.Finalize();
      return;
    }

    int root, i = 0, j, k, stride = 15;
    test out[] = new test[tasks * stride];
    test in[] = new test[MAXLEN];
    int dis[] = new int[tasks];
    int scount[] = new int[tasks];

    for (i = 0; i < MAXLEN; i++) {
      in[i] = new test();
      in[i].a = 0;
    }
    for (i = 0; i < tasks; i++) {
      dis[i] = i * stride;
      scount[i] = 5;
    }

    scount[0] = 10;

    for (i = 0; i < tasks * stride; i++) {
      out[i] = new test();
      out[i].a = i;
    }

    MPI.COMM_WORLD.Scatterv(out, 0, scount, dis, MPI.OBJECT, in, 0, scount[myself], MPI.OBJECT, 0);

    String[] messbuf = new String[1];

    if (myself == 0) {
      System.out.println("Original array on root...");
      for (i = 0; i < tasks * stride; i++) System.out.print(out[i].a + " ");
      System.out.println();
      System.out.println();

      System.out.println("Result on proc 0...");
      System.out.println("Stride = 15 " + "Count = " + scount[0]);
      for (i = 0; i < MAXLEN; i++) System.out.print(in[i].a + " ");
      System.out.println();
      System.out.println();

      // Reproduces output of original test case, but deterministically

      int nmess = tasks < 3 ? tasks : 3;
      for (int t = 1; t < nmess; t++) {
        MPI.COMM_WORLD.Recv(messbuf, 0, 1, MPI.OBJECT, t, 0);

        System.out.print(messbuf[0]);
      }
    }

    if (myself == 1) {
      StringBuffer mess = new StringBuffer();

      mess.append("Result on proc 1...\n");
      mess.append("Stride = 15 " + "Count = " + scount[1] + "\n");
      for (i = 0; i < MAXLEN; i++) mess.append(in[i].a + " ");
      mess.append("\n");
      mess.append("\n");

      messbuf[0] = mess.toString();
      MPI.COMM_WORLD.Send(messbuf, 0, 1, MPI.OBJECT, 0, 0);
    }

    if (myself == 2) {
      StringBuffer mess = new StringBuffer();

      mess.append("Result on proc 2...\n");
      mess.append("Stride = 15 " + "Count = " + scount[2] + "\n");
      for (i = 0; i < MAXLEN; i++) mess.append(in[i].a + " ");
      mess.append("\n");

      messbuf[0] = mess.toString();
      MPI.COMM_WORLD.Send(messbuf, 0, 1, MPI.OBJECT, 0, 0);
    }

    if (myself == 0) System.out.println("ScattervO TEST COMPLETE");
    MPI.Finalize();
  }