/** * Returns the declaration constraints. * * @return declaration constraints */ public final Formula decls() { // File and Dir partition object final Formula f0 = Obj.eq(File.union(Dir)).and(File.intersection(Dir).no()); // Root and Cur are in Dir and do not intersect final Formula f1 = Root.in(Dir).and(Cur.in(Dir)).and(Root.intersection(Cur).no()); // don't need to specify that Dir, Name, and DirEntry are disjoint; implied by bounds final Formula f2 = entries.in(Dir.product(DirEntry)); final Formula f3 = parent.partialFunction(Dir, Dir); final Formula f4 = name.function(DirEntry, Name); final Formula f5 = contents.function(DirEntry, Obj); return f0.and(f1).and(f2).and(f3).and(f4).and(f5); }
/** * Returns a relational encoding of the problem. * * @return a relational encoding of the problem. */ public Formula rules() { final List<Formula> rules = new ArrayList<Formula>(); rules.add(x.function(queen, num)); rules.add(y.function(queen, num)); final Variable i = Variable.unary("n"); final Variable q1 = Variable.unary("q1"), q2 = Variable.unary("q2"); // at most one queen in each row: all i: num | lone x.i rules.add(x.join(i).lone().forAll(i.oneOf(num))); // at most one queen in each column: all i: num | lone y.i rules.add(y.join(i).lone().forAll(i.oneOf(num))); // no queen in a blocked position: all q: Queen | q.x->q.y !in blocked rules.add(q1.join(x).product(q1.join(y)).intersection(blocked).no().forAll(q1.oneOf(queen))); // at most one queen on each diagonal // all q1: Queen, q2: Queen - q1 | // let xu = prevs[q2.x] + prevs[q1.x], // xi = prevs[q2.x] & prevs[q1.x], // yu = prevs[q2.y] + prevs[q1.y], // yi = prevs[q2.y] & prevs[q1.y] | // #(xu - xi) != #(yu - yi) final Expression ordClosure = ord.closure(); final Expression q2xPrevs = ordClosure.join(q2.join(x)), q1xPrevs = ordClosure.join(q1.join(x)); final Expression q2yPrevs = ordClosure.join(q2.join(y)), q1yPrevs = ordClosure.join(q1.join(y)); final IntExpression xDiff = (q2xPrevs.union(q1xPrevs)).difference(q2xPrevs.intersection(q1xPrevs)).count(); final IntExpression yDiff = (q2yPrevs.union(q1yPrevs)).difference(q2yPrevs.intersection(q1yPrevs)).count(); rules.add(xDiff.eq(yDiff).not().forAll(q1.oneOf(queen).and(q2.oneOf(queen.difference(q1))))); return Formula.and(rules); }