@Override public void trainC(ClassificationDataSet dataSet, ExecutorService threadPool) { final int models = baseClassifiers.size(); final int C = dataSet.getClassSize(); weightsPerModel = C == 2 ? 1 : C; ClassificationDataSet metaSet = new ClassificationDataSet( weightsPerModel * models, new CategoricalData[0], dataSet.getPredicting()); List<ClassificationDataSet> dataFolds = dataSet.cvSet(folds); // iterate in the order of the folds so we get the right dataum weights for (ClassificationDataSet cds : dataFolds) for (int i = 0; i < cds.getSampleSize(); i++) metaSet.addDataPoint( new DenseVector(weightsPerModel * models), cds.getDataPointCategory(i), cds.getDataPoint(i).getWeight()); // create the meta training set for (int c = 0; c < baseClassifiers.size(); c++) { Classifier cl = baseClassifiers.get(c); int pos = 0; for (int f = 0; f < dataFolds.size(); f++) { ClassificationDataSet train = ClassificationDataSet.comineAllBut(dataFolds, f); ClassificationDataSet test = dataFolds.get(f); if (threadPool == null) cl.trainC(train); else cl.trainC(train, threadPool); for (int i = 0; i < test.getSampleSize(); i++) // evaluate and mark each point in the held out fold. { CategoricalResults pred = cl.classify(test.getDataPoint(i)); if (C == 2) metaSet.getDataPoint(pos).getNumericalValues().set(c, pred.getProb(0) * 2 - 1); else { Vec toSet = metaSet.getDataPoint(pos).getNumericalValues(); for (int j = weightsPerModel * c; j < weightsPerModel * (c + 1); j++) toSet.set(j, pred.getProb(j - weightsPerModel * c)); } pos++; } } } // train the meta model if (threadPool == null) aggregatingClassifier.trainC(metaSet); else aggregatingClassifier.trainC(metaSet, threadPool); // train the final classifiers, unless folds=1. In that case they are already trained if (folds != 1) { for (Classifier cl : baseClassifiers) if (threadPool == null) cl.trainC(dataSet); else cl.trainC(dataSet, threadPool); } }
public CategoricalResults classify(DataPoint data) { if (coefficents == null) throw new UntrainedModelException("Model has not yet been trained"); else if (shift != 0 || scale != 1) throw new UntrainedModelException("Model was trained for regression, not classifiaction"); CategoricalResults results = new CategoricalResults(2); // It looks a little backwards. But if the true class is 0, and we are accurate, then we expect // regress to return a value near zero. results.setProb(1, regress(data)); results.setProb(0, 1.0 - results.getProb(1)); return results; }
@Override public CategoricalResults classify(DataPoint data) { Vec w = new DenseVector(weightsPerModel * baseClassifiers.size()); if (weightsPerModel == 1) for (int i = 0; i < baseClassifiers.size(); i++) w.set(i, baseClassifiers.get(i).classify(data).getProb(0) * 2 - 1); else { for (int i = 0; i < baseClassifiers.size(); i++) { CategoricalResults pred = baseClassifiers.get(i).classify(data); for (int j = 0; j < weightsPerModel; j++) w.set(i * weightsPerModel + j, pred.getProb(j)); } } return aggregatingClassifier.classify(new DataPoint(w)); }