예제 #1
0
 /**
  * Constructor. Creates a new instance of Spea2Fitness for a given <code>SolutionSet</code>.
  *
  * @param solutionSet The <code>SolutionSet</code>
  */
 public Spea2Fitness(SolutionSet solutionSet) {
   distance = distance_.distanceMatrix(solutionSet);
   solutionSet_ = solutionSet;
   for (int i = 0; i < solutionSet_.size(); i++) {
     solutionSet_.get(i).setLocation(i);
   } // for
 } // Spea2Fitness
예제 #2
0
  /**
   * Performs the operation
   *
   * @param object Object representing a SolutionSet.
   * @return the best solution found
   */
  public Object execute(Object object, CITO_CAITO problem) {
    SolutionSet solutionSet = (SolutionSet) object;

    if (solutionSet.size() == 0) {
      return null;
    }
    int bestSolution;

    bestSolution = 0;

    for (int i = 1; i < solutionSet.size(); i++) {
      if (comparator_.compare(solutionSet.get(i), solutionSet.get(bestSolution)) < 0)
        bestSolution = i;
    } // for

    return bestSolution;
  } // Execute
예제 #3
0
  public static void main(String[] args) throws JMException, ClassNotFoundException {
    Problem problem; // The problem to solve
    Algorithm algorithm; // The algorithm to use
    Operator crossover; // Crossover operator
    Operator mutation; // Mutation operator
    Operator selection; // Selection operator

    // int bits ; // Length of bit string in the OneMax problem

    // bits = 512 ;
    // problem = new OneMax(bits);

    problem = new Sphere("Real", 20);
    // problem = new Easom("Real") ;
    // problem = new Griewank("Real", 10) ;

    algorithm = new DE(problem); // Asynchronous cGA

    /* Algorithm parameters*/
    algorithm.setInputParameter("populationSize", 100);
    algorithm.setInputParameter("maxEvaluations", 1000000);

    // Crossover operator
    crossover = CrossoverFactory.getCrossoverOperator("DifferentialEvolutionCrossover");
    crossover.setParameter("CR", 0.1);
    crossover.setParameter("F", 0.5);
    crossover.setParameter("DE_VARIANT", "rand/1/bin");

    // Add the operators to the algorithm
    selection = SelectionFactory.getSelectionOperator("DifferentialEvolutionSelection");

    algorithm.addOperator("crossover", crossover);
    algorithm.addOperator("selection", selection);

    /* Execute the Algorithm */
    long initTime = System.currentTimeMillis();
    SolutionSet population = algorithm.execute();
    long estimatedTime = System.currentTimeMillis() - initTime;
    System.out.println("Total execution time: " + estimatedTime);

    /* Log messages */
    System.out.println("Objectives values have been writen to file FUN");
    population.printObjectivesToFile("FUN");
    System.out.println("Variables values have been writen to file VAR");
    population.printVariablesToFile("VAR");
  } // main
예제 #4
0
  /**
   * Gets 'size' elements from a population of more than 'size' elements using for this de
   * enviromentalSelection truncation
   *
   * @param size The number of elements to get.
   */
  public SolutionSet environmentalSelection(int size) {

    if (solutionSet_.size() < size) {
      size = solutionSet_.size();
    }

    // Create a new auxiliar population for no alter the original population
    SolutionSet aux = new SolutionSet(solutionSet_.size());

    int i = 0;
    while (i < solutionSet_.size()) {
      if (solutionSet_.get(i).getFitness() < 1.0) {
        aux.add(solutionSet_.get(i));
        solutionSet_.remove(i);
      } else {
        i++;
      } // if
    } // while

    if (aux.size() < size) {
      Comparator comparator = new FitnessComparator();
      solutionSet_.sort(comparator);
      int remain = size - aux.size();
      for (i = 0; i < remain; i++) {
        aux.add(solutionSet_.get(i));
      }
      return aux;
    } else if (aux.size() == size) {
      return aux;
    }

    double[][] distance = distance_.distanceMatrix(aux);
    List<List<DistanceNode>> distanceList = new LinkedList<List<DistanceNode>>();
    for (int pos = 0; pos < aux.size(); pos++) {
      aux.get(pos).setLocation(pos);
      List<DistanceNode> distanceNodeList = new ArrayList<DistanceNode>();
      for (int ref = 0; ref < aux.size(); ref++) {
        if (pos != ref) {
          distanceNodeList.add(new DistanceNode(distance[pos][ref], ref));
        } // if
      } // for
      distanceList.add(distanceNodeList);
    } // for

    for (int q = 0; q < distanceList.size(); q++) {
      Collections.sort(distanceList.get(q), distanceNodeComparator);
    } // for

    while (aux.size() > size) {
      double minDistance = Double.MAX_VALUE;
      int toRemove = 0;
      i = 0;
      Iterator<List<DistanceNode>> iterator = distanceList.iterator();
      while (iterator.hasNext()) {
        List<DistanceNode> dn = iterator.next();
        if (dn.get(0).getDistance() < minDistance) {
          toRemove = i;
          minDistance = dn.get(0).getDistance();
          // i y toRemove have the same distance to the first solution
        } else if (dn.get(0).getDistance() == minDistance) {
          int k = 0;
          while ((dn.get(k).getDistance() == distanceList.get(toRemove).get(k).getDistance())
              && k < (distanceList.get(i).size() - 1)) {
            k++;
          }

          if (dn.get(k).getDistance() < distanceList.get(toRemove).get(k).getDistance()) {
            toRemove = i;
          } // if
        } // if
        i++;
      } // while

      int tmp = aux.get(toRemove).getLocation();
      aux.remove(toRemove);
      distanceList.remove(toRemove);

      Iterator<List<DistanceNode>> externIterator = distanceList.iterator();
      while (externIterator.hasNext()) {
        Iterator<DistanceNode> interIterator = externIterator.next().iterator();
        while (interIterator.hasNext()) {
          if (interIterator.next().getReference() == tmp) {
            interIterator.remove();
            continue;
          } // if
        } // while
      } // while
    } // while
    return aux;
  } // environmentalSelection
예제 #5
0
  /** Assigns fitness for all the solutions. */
  public void fitnessAssign() {
    double[] strength = new double[solutionSet_.size()];
    double[] rawFitness = new double[solutionSet_.size()];
    double kDistance;

    // Calculate the strength value
    // strength(i) = |{j | j <- SolutionSet and i dominate j}|
    for (int i = 0; i < solutionSet_.size(); i++) {
      for (int j = 0; j < solutionSet_.size(); j++) {
        if (dominance_.compare(solutionSet_.get(i), solutionSet_.get(j)) == -1) {
          strength[i] += 1.0;
        } // if
      } // for
    } // for

    // Calculate the raw fitness
    // rawFitness(i) = |{sum strenght(j) | j <- SolutionSet and j dominate i}|
    for (int i = 0; i < solutionSet_.size(); i++) {
      for (int j = 0; j < solutionSet_.size(); j++) {
        if (dominance_.compare(solutionSet_.get(i), solutionSet_.get(j)) == 1) {
          rawFitness[i] += strength[j];
        } // if
      } // for
    } // for

    // Add the distance to the k-th individual. In the reference paper of SPEA2,
    // k = sqrt(population.size()), but a value of k = 1 recommended. See
    // http://www.tik.ee.ethz.ch/pisa/selectors/spea2/spea2_documentation.txt
    int k = 1;
    for (int i = 0; i < distance.length; i++) {
      Arrays.sort(distance[i]);
      kDistance = 1.0 / (distance[i][k] + 2.0); // Calcule de D(i) distance
      // population.get(i).setFitness(rawFitness[i]);
      solutionSet_.get(i).setFitness(rawFitness[i] + kDistance);
    } // for
  } // fitnessAsign
예제 #6
0
  /**
   * @param args Command line arguments. The first (optional) argument specifies the problem to
   *     solve.
   * @throws JMException
   * @throws IOException
   * @throws SecurityException Usage: three options - jmetal.metaheuristics.mocell.MOCell_main -
   *     jmetal.metaheuristics.mocell.MOCell_main problemName -
   *     jmetal.metaheuristics.mocell.MOCell_main problemName ParetoFrontFile
   */
  public static void main(String[] args) throws JMException, IOException, ClassNotFoundException {
    Problem problem; // The problem to solve
    Algorithm algorithm; // The algorithm to use
    Operator mutation; // Mutation operator

    QualityIndicator indicators; // Object to get quality indicators

    // Logger object and file to store log messages
    logger_ = Configuration.logger_;
    fileHandler_ = new FileHandler("PAES_main.log");
    logger_.addHandler(fileHandler_);

    indicators = null;
    if (args.length == 1) {
      Object[] params = {"Real"};
      problem = (new ProblemFactory()).getProblem(args[0], params);
    } // if
    else if (args.length == 2) {
      Object[] params = {"Real"};
      problem = (new ProblemFactory()).getProblem(args[0], params);
      indicators = new QualityIndicator(problem, args[1]);
    } // if
    else { // Default problem
      problem = new Kursawe("ArrayReal", 3);
      // problem = new Fonseca("Real");
      // problem = new Kursawe("BinaryReal",3);
      // problem = new Water("Real");
      // problem = new ZDT4("Real", 1000);
      // problem = new WFG1("Real");
      // problem = new DTLZ1("Real");
      // problem = new OKA2("Real") ;
    } // else

    algorithm = new PAES(problem);

    // Algorithm parameters
    algorithm.setInputParameter("archiveSize", 100);
    algorithm.setInputParameter("biSections", 5);
    algorithm.setInputParameter("maxEvaluations", 25000);

    // Mutation (Real variables)
    mutation = MutationFactory.getMutationOperator("PolynomialMutation");
    mutation.setParameter("probability", 1.0 / problem.getNumberOfVariables());
    mutation.setParameter("distributionIndex", 20.0);

    // Mutation (BinaryReal variables)
    // mutation = MutationFactory.getMutationOperator("BitFlipMutation");
    // mutation.setParameter("probability",0.1);

    // Add the operators to the algorithm
    algorithm.addOperator("mutation", mutation);

    // Execute the Algorithm
    long initTime = System.currentTimeMillis();
    SolutionSet population = algorithm.execute();
    long estimatedTime = System.currentTimeMillis() - initTime;

    // Result messages
    // STEP 8. Print the results
    logger_.info("Total execution time: " + estimatedTime + "ms");
    logger_.info("Variables values have been writen to file VAR");
    population.printVariablesToFile("VAR");
    logger_.info("Objectives values have been writen to file FUN");
    population.printObjectivesToFile("FUN");

    if (indicators != null) {
      logger_.info("Quality indicators");
      logger_.info("Hypervolume: " + indicators.getHypervolume(population));
      logger_.info("GD         : " + indicators.getGD(population));
      logger_.info("IGD        : " + indicators.getIGD(population));
      logger_.info("Spread     : " + indicators.getSpread(population));
      logger_.info("Epsilon    : " + indicators.getEpsilon(population));
    } // if
  } // main
예제 #7
0
  /**
   * @author Juanjo This method selects N solutions from a set M, where N <= M using the same method
   *     proposed by Qingfu Zhang, W. Liu, and Hui Li in the paper describing MOEA/D-DRA (CEC 09
   *     COMPTETITION) An example is giving in that paper for two objectives. If N = 100, then the
   *     best solutions attenting to the weights (0,1), (1/99,98/99), ...,(98/99,1/99), (1,0) are
   *     selected.
   *     <p>Using this method result in 101 solutions instead of 100. We will just compute 100 even
   *     distributed weights and used them. The result is the same
   *     <p>In case of more than two objectives the procedure is: 1- Select a solution at random 2-
   *     Select the solution from the population which have maximum distance to it (whithout
   *     considering the already included)
   * @param n: The number of solutions to return
   * @return A solution set containing those elements
   */
  SolutionSet finalSelection(int n) throws JMException {
    SolutionSet res = new SolutionSet(n);
    if (problem_.getNumberOfObjectives() == 2) { // subcase 1
      double[][] intern_lambda = new double[n][2];
      for (int i = 0; i < n; i++) {
        double a = 1.0 * i / (n - 1);
        intern_lambda[i][0] = a;
        intern_lambda[i][1] = 1 - a;
      } // for

      // we have now the weights, now select the best solution for each of them
      for (int i = 0; i < n; i++) {
        Solution current_best = population.get(0);
        int index = 0;
        double value = fitnessFunction(current_best, intern_lambda[i]);
        for (int j = 1; j < n; j++) {
          double aux =
              fitnessFunction(
                  population.get(j), intern_lambda[i]); // we are looking the best for the weight i
          if (aux < value) { // solution in position j is better!
            value = aux;
            current_best = population.get(j);
          }
        }
        res.add(new Solution(current_best));
      }

    } else { // general case (more than two objectives)

      Distance distance_utility = new Distance();
      int random_index = PseudoRandom.randInt(0, population.size() - 1);

      // create a list containing all the solutions but the selected one (only references to them)
      List<Solution> candidate = new LinkedList<Solution>();
      candidate.add(population.get(random_index));

      for (int i = 0; i < population.size(); i++) {
        if (i != random_index) {
          candidate.add(population.get(i));
        }
      } // for

      while (res.size() < n) {
        int index = 0;
        Solution selected = candidate.get(0); // it should be a next! (n <= population size!)
        double distance_value =
            distance_utility.distanceToSolutionSetInObjectiveSpace(selected, res);
        int i = 1;
        while (i < candidate.size()) {
          Solution next_candidate = candidate.get(i);
          double aux =
              distance_value =
                  distance_utility.distanceToSolutionSetInObjectiveSpace(next_candidate, res);
          if (aux > distance_value) {
            distance_value = aux;
            index = i;
          }
          i++;
        }

        // add the selected to res and remove from candidate list
        res.add(new Solution(candidate.remove(index)));
      } //
    }
    return res;
  }
예제 #8
0
  /**
   * @param args Command line arguments.
   * @throws JMException
   * @throws IOException
   * @throws SecurityException Usage: three choices - jmetal.metaheuristics.nsgaII.NSGAII_main -
   *     jmetal.metaheuristics.nsgaII.NSGAII_main problemName -
   *     jmetal.metaheuristics.nsgaII.NSGAII_main problemName paretoFrontFile
   */
  public static void main(String[] args) throws JMException, IOException, ClassNotFoundException {
    Problem problem; // The problem to solve
    Algorithm algorithm; // The algorithm to use
    Operator crossover; // Crossover operator
    Operator mutation; // Mutation operator
    Operator selection; // Selection operator

    QualityIndicator indicators; // Object to get quality indicators

    // Logger object and file to store log messages
    logger_ = Configuration.logger_;
    fileHandler_ = new FileHandler("IBEA.log");
    logger_.addHandler(fileHandler_);

    indicators = null;
    if (args.length == 1) {
      Object[] params = {"Real"};
      problem = (new ProblemFactory()).getProblem(args[0], params);
    } // if
    else if (args.length == 2) {
      Object[] params = {"Real"};
      problem = (new ProblemFactory()).getProblem(args[0], params);
      indicators = new QualityIndicator(problem, args[1]);
    } // if
    else { // Default problem
      problem = new Kursawe("Real", 3);
      // problem = new Kursawe("BinaryReal", 3);
      // problem = new Water("Real");
      // problem = new ZDT1("ArrayReal", 100);
      // problem = new ConstrEx("Real");
      // problem = new DTLZ1("Real");
      // problem = new OKA2("Real") ;
    } // else

    algorithm = new IBEA(problem);

    // Algorithm parameters
    algorithm.setInputParameter("populationSize", 100);
    algorithm.setInputParameter("archiveSize", 100);
    algorithm.setInputParameter("maxEvaluations", 25000);

    // Mutation and Crossover for Real codification
    crossover = CrossoverFactory.getCrossoverOperator("SBXCrossover");
    crossover.setParameter("probability", 1.0);
    crossover.setParameter("distribuitionIndex", 20.0);
    mutation = MutationFactory.getMutationOperator("PolynomialMutation");
    mutation.setParameter("probability", 1.0 / problem.getNumberOfVariables());
    mutation.setParameter("distributionIndex", 20.0);

    /* Mutation and Crossover Binary codification */
    /*
    crossover = CrossoverFactory.getCrossoverOperator("SinglePointCrossover");
    crossover.setParameter("probability",0.9);
    mutation = MutationFactory.getMutationOperator("BitFlipMutation");
    mutation.setParameter("probability",1.0/80);
    */

    /* Selection Operator */
    selection = new BinaryTournament(new FitnessComparator());
    // Add the operators to the algorithm
    algorithm.addOperator("crossover", crossover);
    algorithm.addOperator("mutation", mutation);
    algorithm.addOperator("selection", selection);

    // Execute the Algorithm
    long initTime = System.currentTimeMillis();
    SolutionSet population = algorithm.execute();
    long estimatedTime = System.currentTimeMillis() - initTime;

    // Print the results
    logger_.info("Total execution time: " + estimatedTime + "ms");
    logger_.info("Variables values have been writen to file VAR");
    population.printVariablesToFile("VAR");
    logger_.info("Objectives values have been writen to file FUN");
    population.printObjectivesToFile("FUN");

    if (indicators != null) {
      logger_.info("Quality indicators");
      logger_.info("Hypervolume: " + indicators.getHypervolume(population));
      logger_.info("GD         : " + indicators.getGD(population));
      logger_.info("IGD        : " + indicators.getIGD(population));
      logger_.info("Spread     : " + indicators.getSpread(population));
      logger_.info("Epsilon    : " + indicators.getEpsilon(population));
    } // if
  } // main