/* Perform Simulation */ public void simulate(float dt) { // Accelerate angular speed float requiredSpeed = targetAngularSpeed - angularSpeed; float angularAccel = requiredSpeed / dt; angularAccel = PApplet.constrain(angularAccel, -maxAngularAccel, maxAngularAccel); // Limit Angular speed angularSpeed += angularAccel * dt; angularSpeed = PApplet.constrain(angularSpeed, -maxAngularSpeed, maxAngularSpeed); // Orientation Simulation orientation += angularSpeed * dt; // Position simulation PVector worldRequiredSpeed = targetSpeed.get(); worldRequiredSpeed.rotate(orientation); worldRequiredSpeed.sub(speed); // PVector worldRequiredSpeed = worldTargetSpeed.get(); float dSpeed = worldRequiredSpeed.mag(); float dAcell = dSpeed / dt; float dForce = Math.min(dAcell * getMass(), motorForce); worldRequiredSpeed.normalize(); worldRequiredSpeed.mult(dForce); force.add(worldRequiredSpeed); super.simulate(dt); }
// Constructor initialize all values Boid(PVector l, float ms, float mf) { loc = l.get(); r = 4.0f; maxspeed = ms; maxforce = mf; acc = new PVector(0, 0); vel = new PVector(maxspeed, 0); }
public void avoid(ArrayList obstacles) { // Make a vector that will be the position of the object // relative to the Boid rotated in the direction of boid's velocity PVector closestRotated = new PVector(sight + 1, sight + 1); float closestDistance = 99999; Obstacle avoid = null; // Let's look at each obstacle for (int i = 0; i < obstacles.size(); i++) { Obstacle o = (Obstacle) obstacles.get(i); float d = PVector.dist(loc, o.loc); PVector dir = vel.get(); dir.normalize(); PVector diff = PVector.sub(o.loc, loc); // Now we use the dot product to rotate the vector that points from boid to obstacle // Velocity is the new x-axis PVector rotated = new PVector(diff.dot(dir), diff.dot(getNormal(dir))); // Is the obstacle in our path? if (PApplet.abs(rotated.y) < (o.radius + r)) { // Is it the closest obstacle? if ((rotated.x > 0) && (rotated.x < closestRotated.x)) { closestRotated = rotated; avoid = o; } } } // Can we actually see the closest one? if (PApplet.abs(closestRotated.x) < sight) { // The desired vector should point away from the obstacle // The closer to the obstacle, the more it should steer PVector desired = new PVector(closestRotated.x, -closestRotated.y * sight / closestRotated.x); desired.normalize(); desired.mult(closestDistance); desired.limit(maxspeed); // Rotate back to the regular coordinate system rotateVector(desired, vel.heading2D()); // Draw some debugging stuff if (debug) { stroke(0); line(loc.x, loc.y, loc.x + desired.x * 10, loc.y + desired.y * 10); avoid.highlight(true); } // Apply Reynolds steering rules desired.sub(vel); desired.limit(maxforce); acc.add(desired); } }
public void setState(PVector position, float orientation, boolean resetAll) { this.position = position.get(); this.orientation = orientation; if (resetAll) { this.force = new PVector(); this.accel = new PVector(); this.speed = new PVector(); } }
// This constructor could be improved to allow a greater variety of pendulums Pendulum(PVector origin_, float r_) { // Fill all variables origin = origin_.get(); r = r_; theta = 0.0f; // calculate the location of the ball using polar to cartesian conversion float x = r * sin(theta); float y = r * cos(theta); loc = new PVector(origin.x + x, origin.y + y); theta_vel = 0.0f; theta_acc = 0.0f; damping = 0.995f; // Arbitrary damping ballr = 16.0f; // Arbitrary ball radius }
// deep copy public PositionRotation clone() { return new PositionRotation(position.get(), rotation.get()); }