public double determinantValue() // 计算行列式 { int i, j, k, p = 0; double change, value = 1.0; Matrix matrix = new Matrix(this); for (i = 0; i < matrix.getLine(); i++) { for (j = i + 1; j < matrix.getLine(); j++) for (; p < matrix.getLine(); p++) { if (matrix.getElement(i, p) == 0 && matrix.getElement(j, p) != 0) for (k = p; k < matrix.getRow(); k++) matrix.setElement(i, k, matrix.getElement(i, k) + matrix.getElement(j, k)); else if (matrix.getElement(i, p) == 0 && matrix.getElement(j, p) == 0) { for (; j < matrix.getLine() && matrix.getElement(j, p) == 0; j++) ; if (j == matrix.getLine()) { j = i + 1; continue; } else { for (k = p; k < matrix.getRow(); k++) matrix.setElement(i, k, matrix.getElement(i, k) + matrix.getElement(j, k)); } } else if (matrix.getElement(i, p) != 0 && matrix.getElement(j, p) == 0) break; change = matrix.getElement(j, p) / matrix.getElement(i, p); for (k = p; k < matrix.getRow(); k++) matrix.setElement(j, k, matrix.getElement(j, k) - matrix.getElement(i, k) * change); break; } p = i; } for (i = 0; i < matrix.getLine(); i++) value *= matrix.getElement(i, i); return value; }
public static Matrix matrixMinus(Matrix matrix1, Matrix matrix2) { // 矩阵减法 int i, j; Matrix matrix = new Matrix(); for (i = 0; i < matrix1.getLine(); i++) for (j = 0; j < matrix1.getRow(); j++) matrix.setElement(i, j, matrix1.getElement(i, j) - matrix2.getElement(i, j)); matrix.setLine(matrix1.getLine()); matrix.setRow(matrix1.getRow()); matrix.setAccuracy(matrix1.getAccuracy()); return matrix; }
public static Matrix matrixCopy(Matrix matrix) { // 矩阵复制 int i, j; Matrix matrix_copy = new Matrix(); matrix_copy.setLine(matrix.getLine()); matrix_copy.setRow(matrix.getRow()); matrix_copy.setAccuracy(matrix.getAccuracy()); matrix_copy.setName(matrix.getName()); for (i = 0; i < matrix.getLine(); i++) for (j = 0; j < matrix.getRow(); j++) matrix_copy.setMatrixArray(matrix.getMatrixArray()); return matrix_copy; }
public static Matrix matrixMultiply(Matrix matrix1, Matrix matrix2) { // 矩阵乘法 int i, j, k; Matrix matrix = new Matrix(); matrix.setLine(matrix1.getLine()); matrix.setRow(matrix2.getRow()); matrix.setAccuracy(matrix1.getAccuracy()); for (i = 0; i < matrix.getLine(); i++) for (j = 0; j < matrix.getRow(); j++) matrix.setElement(i, j, 0.0); for (i = 0; i < matrix.getLine(); i++) for (j = 0; j < matrix.getRow(); j++) for (k = 0; k < matrix1.getRow(); k++) matrix.setElement( i, j, matrix.getElement(i, j) + matrix1.getElement(i, k) * matrix2.getElement(k, j)); return matrix; }
public Matrix matrixNumMultiply(double x) { // 矩阵乘以一个数 int i, j; Matrix matrix = new Matrix(this); for (i = 0; i < matrix.getLine(); i++) for (j = 0; j < matrix.getRow(); j++) matrix.setElement(i, j, x * matrix.getElement(i, j)); return matrix; }
public Matrix matrixAccuralize() { // 精确化矩阵 int i, j; Matrix matrix = new Matrix(this); for (i = 0; i < matrix.getLine(); i++) for (j = 0; j < matrix.getRow(); j++) if (Math.abs(matrix.getElement(i, j)) <= matrix.getAccuracy()) matrix.setElement(i, j, 0.0); return matrix; }
public static void matrixToPanel(JTextField[] jtfMatrix, Matrix matrix) { int i, j; DecimalFormat df = new DecimalFormat(String.valueOf(matrix.getAccuracy()).replace('1', '0')); for (i = 0; i < matrix.getLine(); i++) for (j = 0; j < matrix.getRow(); j++) { jtfMatrix[i * matrix.getRow() + j].setText( String.valueOf(df.format(matrix.getElement(i, j)))); } }
public Matrix matrixLineSimplify() { // 矩阵的行简化 int i, j, k, p = 0; double change, first_of_line; Matrix matrix0 = new Matrix(this); for (i = 0; i < matrix0.getLine(); i++) { for (j = i + 1; j < matrix0.getLine(); j++) for (; p < matrix0.getRow(); p++) { if (matrix0.getElement(i, p) == 0 && matrix0.getElement(j, p) != 0) for (k = 0; k < matrix0.getRow(); k++) matrix0.setElement(i, k, matrix0.getElement(i, k) + matrix0.getElement(j, k)); else if (matrix0.getElement(i, p) == 0 && matrix0.getElement(j, p) == 0) { for (; j < matrix0.getLine() && matrix0.getElement(j, p) == 0; j++) ; if (j == matrix0.getLine()) { j = i + 1; continue; } else { for (k = p; k < matrix0.getRow(); k++) matrix0.setElement(i, k, matrix0.getElement(i, k) + matrix0.getElement(j, k)); } } else if (matrix0.getElement(i, p) != 0 && matrix0.getElement(j, p) == 0) break; if (matrix0.getElement(i, p) < 0) for (k = p; k < matrix0.getRow(); k++) matrix0.setElement(i, k, -matrix0.getElement(i, k)); if (matrix0.getElement(j, p) < 0) for (k = p; k < matrix0.getRow(); k++) matrix0.setElement(j, k, -matrix0.getElement(j, k)); change = matrix0.getElement(j, p) / matrix0.getElement(i, p); for (k = p; k < matrix0.getRow(); k++) matrix0.setElement(j, k, matrix0.getElement(j, k) - matrix0.getElement(i, k) * change); break; } p = i; } // 将每一行最简化 matrix0 = matrix0.matrixAccuralize(); for (i = 0; i < matrix0.getLine(); i++) { for (j = 0; j < matrix0.getRow() && matrix0.getElement(i, j) == 0; j++) ; first_of_line = matrix0.getElement(i, j); if (j == matrix0.getRow()) continue; for (; j < matrix0.getRow(); j++) matrix0.setElement(i, j, matrix0.getElement(i, j) / first_of_line); } return matrix0; }
public static Matrix scanMatrix() { // 输入矩阵 int i, j; Matrix matrix = new Matrix(); Scanner scanner = new Scanner(System.in); matrix.setLine(scanner.nextInt()); matrix.setRow(scanner.nextInt()); matrix.setAccuracy(scanner.nextDouble()); for (i = 0; i < matrix.getLine(); i++) { for (j = 0; j < matrix.getRow(); j++) matrix.setElement(i, j, scanner.nextDouble()); } return matrix; }
public int matrixRank() // 矩阵的秩 { int rank = 0, i, j; Matrix matrix = new Matrix(); matrix = matrixLineSimplify(); for (i = 0; i < matrix.getLine(); i++) for (j = 0; j < matrix.getRow(); j++) if (Math.abs(matrix.getElement(i, j)) > matrix.getAccuracy()) { rank++; break; } return rank; }
public Matrix(Matrix matrix) { this.matrixArray = Matrix.matrixArrayCopy(matrix.getMatrixArray()); this.line = matrix.getLine(); this.row = matrix.getRow(); this.accuracy = matrix.getAccuracy(); }
public Matrix matrixReverse() { // 求矩阵的逆 int i, j, k; double change; Matrix matrix_reverse = new Matrix(this); for (i = 0; i < matrix_reverse.getLine(); i++) for (j = matrix_reverse.getRow(); j < 2 * matrix_reverse.getRow(); j++) matrix_reverse.setElement(i, j, (j == matrix_reverse.getRow() + i) ? 1 : 0); matrix_reverse.setRow(2 * matrix_reverse.getRow()); matrix_reverse = matrix_reverse.matrixLineSimplify(); /*将矩阵的左半边化为单位阵*/ for (i = 0; i < matrix_reverse.getLine() - 1; i++) for (j = i + 1; j < matrix_reverse.getRow() / 2; j++) { if (matrix_reverse.getElement(i, j) == 0) continue; if (matrix_reverse.getElement(i, j) < 0) for (k = 0; k < matrix_reverse.getRow(); k++) matrix_reverse.setElement(i, k, -matrix_reverse.getElement(i, k)); if (matrix_reverse.getElement(j, j) < 0) for (k = 0; k < matrix_reverse.getRow(); k++) matrix_reverse.setElement(j, k, -matrix_reverse.getElement(j, k)); change = matrix_reverse.getElement(i, j) / matrix_reverse.getElement(j, j); for (k = 0; k < matrix_reverse.getRow(); k++) matrix_reverse.setElement( i, k, matrix_reverse.getElement(i, k) - matrix_reverse.getElement(j, k) * change); } matrix_reverse.setRow(matrix_reverse.getRow() / 2); for (i = 0; i < matrix_reverse.getLine(); i++) for (j = 0; j < matrix_reverse.getRow(); j++) matrix_reverse.setElement(i, j, matrix_reverse.getElement(i, j + matrix_reverse.getRow())); return matrix_reverse; }