// Derives QFunctions for the given value function and simulates the // greedy policy for the given number of trials and steps per trial. // Returns final value of every trial. public ArrayList simulate(int trials, int steps, long rand_seed) { ArrayList values = new ArrayList(); _r = new Random(rand_seed); for (int trial = 1; trial <= trials; trial++) { System.out.println("\n -----------\n Trial " + trial + "\n -----------"); // Initialize state _state = new ArrayList(); _nVars = _mdp._alVars.size(); for (int c = 0; c < (_nVars << 1); c++) { _state.add("-"); } Iterator i = _mdp._alVars.iterator(); _vars = new TreeSet(); while (i.hasNext()) { String s = (String) i.next(); if (!s.endsWith("\'")) { Integer gid = (Integer) _mdp._tmVar2ID.get(s); _vars.add(gid); // Note: assign level (level is gid-1 b/c gids in order) _state.set(gid.intValue() - 1, _r.nextBoolean() ? TRUE : FALSE); } } // System.out.println(_mdp._context.printNode(_mdp._valueDD) + "\n" + _state); double reward = _mdp._context.evaluate(_mdp._rewardDD, _state); System.out.print(" " + PrintState(_state) + " " + MDP._df.format(reward)); // Run steps for (int step = 1; step <= steps; step++) { // Get action Action a; if (_bUseBasis) { a = getBasisAction(); } else { a = getAction(); } // Execute action executeAction(a); // Update reward reward = (_mdp._bdDiscount.doubleValue() * reward) + _mdp._context.evaluate(_mdp._rewardDD, _state); System.out.println(", a=" + a._sName); System.out.print( " " + PrintState(_state) + " " + MDP._df.format(reward) + ": " + "Step " + step); } values.add(new Double(reward)); System.out.println(); } return values; }
public void testNaNValues() throws ClassNotFoundException, IOException { testWriteAndRead( new ComplexClass( rand.nextInt(), rand.nextLong(), "hello", rand.nextBoolean(), Double.NaN, rand.nextFloat())); }
public void testWritingRandomValue() throws ClassNotFoundException, IOException { testWriteAndRead( new ComplexClass( rand.nextInt(), rand.nextLong(), Integer.toString(rand.nextInt()), rand.nextBoolean(), rand.nextDouble(), rand.nextFloat())); }
static void testCopyInputStreamToFile(int size) throws IOException { Path tmpdir = createTempDirectory("blah"); Path source = tmpdir.resolve("source"); Path target = tmpdir.resolve("target"); try { boolean testReplaceExisting = rand.nextBoolean(); // create source file byte[] b = new byte[size]; rand.nextBytes(b); write(source, b); // target file might already exist if (testReplaceExisting && rand.nextBoolean()) { write(target, new byte[rand.nextInt(512)]); } // copy from stream to file InputStream in = new FileInputStream(source.toFile()); try { long n; if (testReplaceExisting) { n = copy(in, target, StandardCopyOption.REPLACE_EXISTING); } else { n = copy(in, target); } assertTrue(in.read() == -1); // EOF assertTrue(n == size); assertTrue(size(target) == size); } finally { in.close(); } // check file byte[] read = readAllBytes(target); assertTrue(Arrays.equals(read, b)); } finally { deleteIfExists(source); deleteIfExists(target); delete(tmpdir); } }
private InputStream generateData() { final String LINE_SEPARATOR = System.getProperty("line.separator"); StringWriter writer = new StringWriter(); int maxMale = numGuests / 2; int maxFemale = numGuests / 2; int maleCount = 0; int femaleCount = 0; // init hobbies List hobbyList = new ArrayList(); for (int i = 1; i <= maxHobbies; i++) { hobbyList.add("h" + i); } Random rnd = new Random(); for (int i = 1; i <= numGuests; i++) { char sex = rnd.nextBoolean() ? 'm' : 'f'; if (sex == 'm' && maleCount == maxMale) { sex = 'f'; } if (sex == 'f' && femaleCount == maxFemale) { sex = 'm'; } if (sex == 'm') { maleCount++; } if (sex == 'f') { femaleCount++; } List guestHobbies = new ArrayList(hobbyList); int numHobbies = minHobbies + rnd.nextInt(maxHobbies - minHobbies + 1); for (int j = 0; j < numHobbies; j++) { int hobbyIndex = rnd.nextInt(guestHobbies.size()); String hobby = (String) guestHobbies.get(hobbyIndex); writer.write( "(guest (name n" + i + ") (sex " + sex + ") (hobby " + hobby + "))" + LINE_SEPARATOR); guestHobbies.remove(hobbyIndex); } } writer.write("(last_seat (seat " + numSeats + "))" + LINE_SEPARATOR); writer.write(LINE_SEPARATOR); writer.write("(context (state start))" + LINE_SEPARATOR); return new ByteArrayInputStream(writer.getBuffer().toString().getBytes()); }
Item() { z = rand.nextBoolean(); b = (byte) rand.nextInt(); c = (char) rand.nextInt(); s = (short) rand.nextInt(); i = rand.nextInt(); f = rand.nextFloat(); j = rand.nextLong(); d = rand.nextDouble(); zary = new boolean[ARRAYLEN]; bary = new byte[ARRAYLEN]; cary = new char[ARRAYLEN]; sary = new short[ARRAYLEN]; iary = new int[ARRAYLEN]; fary = new float[ARRAYLEN]; jary = new long[ARRAYLEN]; dary = new double[ARRAYLEN]; oary = new Object[ARRAYLEN]; for (int i = 0; i < ARRAYLEN; i++) { zary[i] = rand.nextBoolean(); bary[i] = (byte) rand.nextInt(); cary[i] = (char) rand.nextInt(); sary[i] = (short) rand.nextInt(); iary[i] = rand.nextInt(); fary[i] = rand.nextFloat(); jary[i] = rand.nextLong(); dary[i] = rand.nextDouble(); oary[i] = new Integer(rand.nextInt()); } char[] strChars = new char[STRLEN]; for (int i = 0; i < STRLEN; i++) { strChars[i] = (char) rand.nextInt(); } str = new String(strChars); }
public void testNullValues() throws ClassNotFoundException, IOException { testWriteAndRead( new ComplexClass( rand.nextInt(), rand.nextLong(), null, rand.nextBoolean(), null, rand.nextFloat())); }
public void nextLevel() { boolean loaded = false; final GameBoard boardView = (GameBoard) this.findViewById(R.id.gameBoard); this.level++; AssetManager am = getResources().getAssets(); try { List<String> allTutoLevels = new LinkedList<String>(Arrays.asList(am.list("levels/tutorial"))); // if(addMsg){ // allTutoLevels.addAll(Arrays.asList(am.list("msg"))); // } Log.d(TAG, allTutoLevels.toString()); for (String name : allTutoLevels) { if (name.startsWith(this.level + ".")) { BufferedReader br = new BufferedReader(new InputStreamReader(am.open("levels/tutorial/" + name))); String line; String levelJSON = ""; while ((line = br.readLine()) != null) { levelJSON += line + "\n"; } br.close(); game.initGame( levelJSON, boardView.getMeasuredWidth() / 60, boardView.getMeasuredHeight() / 60); loaded = true; } } } catch (IOException e) { e.printStackTrace(); } if (!loaded) { Random r = new Random(); List<String> allLevels = new ArrayList<>(); try { allLevels = Arrays.asList(am.list("levels")); } catch (IOException e) { } if (r.nextBoolean() && !allLevels.isEmpty() && allLevels.size() != allDoneLevels.size()) { try { int nLevel; do { nLevel = r.nextInt(allLevels.size()); } while (allDoneLevels.contains(allLevels.get(nLevel))); String name = allLevels.get(nLevel); BufferedReader br = new BufferedReader(new InputStreamReader(am.open("levels/" + name))); String line; String levelJSON = ""; while ((line = br.readLine()) != null) { levelJSON += line + "\n"; } br.close(); allDoneLevels.add(name); game.initGame( levelJSON, boardView.getMeasuredWidth() / 60, boardView.getMeasuredHeight() / 60); } catch (IOException e) { this.game.initGame( level, boardView.getMeasuredWidth() / 60, boardView.getMeasuredHeight() / 60); } } else { this.game.initGame( level, boardView.getMeasuredWidth() / 60, boardView.getMeasuredHeight() / 60); } } // am.close(); boardView.setGame(this.game); boardView.invalidate(); boardView.getHowdyShadeView().invalidate(); Toast.makeText(this, this.level + "", Toast.LENGTH_SHORT).show(); Log.i( TAG, "Max tiles : " + (boardView.getMeasuredWidth() / 60) * (boardView.getMeasuredHeight() / 60)); }
static boolean heads() { return rand.nextBoolean(); }
public static Vector<Double> trainNode( String filename, int outputRepresentation, String inputRepresentation, int filter, double learningRate, int epochs) { Vector<Double> node = null; // initialize node to null double error = 1; // initialize error double output = 0; // initialize output Vector<Double> trainError = new Vector<Double>(); double meansq = 0; String binTarget = ""; String binaryRep = ""; int target; openFile(filename); // open our file for training firstRead = true; int targetCounter = 0; while ((target = readFileIntoInputVector(inputRepresentation)) != -2) { // while we have not reached out end of file error if (outputRepresentation == 4) { binTarget = Integer.toBinaryString(target); // convert target to binary int[] targetArray = new int[4]; // array to hold binary ints for (int h = 0; h < targetArray.length; h++) { // add binary elements to int array try { targetArray[targetArray.length - h - 1] = Character.digit(binTarget.charAt(binTarget.length() - h - 1), 10); } catch (IndexOutOfBoundsException e) { // if there is empty spaces, fill with zeros targetArray[targetArray.length - h - 1] = 0; } } target = targetArray[filter]; binTarget = ""; for (int i = 0; i < targetArray.length; i++) { binTarget = binTarget + targetArray[i]; } } if ((filter == target && outputRepresentation == 10) || outputRepresentation != 10) { if (node == null) { node = new Vector<Double>(); for (int i = 0; i < inputs.size(); i++) { // for each input double randWeight = 1; // initialize random weight while (randWeight > 0.15) // while out random isn't less than 0.15 randWeight = random.nextDouble(); // get a new random double if (random.nextBoolean()) randWeight = randWeight * -1; // randomly set to negative node.addElement(new Double(randWeight)); // store random weight } } targetCounter++; // train for number of epochs for (int i = 0; i < epochs; i++) { // for each epoch double weightedSum = 0; // set/reset the weighted sum to 0 for (int j = 0; j < inputs.size(); j++) { weightedSum += (inputs.elementAt(j) * node.elementAt(j)); // calculate weighted sum } output = activation(weightedSum); // retrieve output if (outputRepresentation == 1 || outputRepresentation == 10) output = output * 10; else if (outputRepresentation == 4) { // each node must have a whole number if (output > 0.5) output = 1; else output = 0; } error = target - output; // calculate error if (i == epochs - 1) { if (outputRepresentation == 4) { if (filter == 0) { allOutputs.ensureCapacity(targetCounter); allOutputs.add(Integer.toString((int) output)); } else { allOutputs.set( targetCounter - 1, allOutputs.get(targetCounter - 1) + ((int) output)); } } trainError.add(error); if (Math.round(error) == 0 && outputRepresentation != 4) { trainCountCorrect++; } else if (outputRepresentation == 4 && filter == 3) { if (allOutputs.get(targetCounter - 1).equals(binTarget)) { trainCountCorrect++; } } } for (int k = 0; k < inputs.size(); k++) { // for each input double derivative = (1.64872 * Math.exp(weightedSum)) / (Math.pow(1.64872 + Math.exp(weightedSum), 2)); // calculate new weights double newWeight = node.elementAt(k) + (learningRate * inputs.elementAt(k) * error * derivative); // cont. node.setElementAt(newWeight, k); // update weights } } } inputs.clear(); } errorVect.addElement((Vector<Double>) trainError.clone()); trainError.clear(); if (outputRepresentation == 4 && filter == 3) System.out.println( "Training Percent: " + (100 * (double) trainCountCorrect / (double) targetCounter)); if (outputRepresentation == 10 && filter == 9) System.out.println( "Training Percent: " + (10 * (double) trainCountCorrect / (double) targetCounter)); if (outputRepresentation == 1) System.out.println( "Training Percent: " + (100 * (double) trainCountCorrect / (double) targetCounter)); closeFile(); return node; // node is now trained for an epoch }