예제 #1
0
 void scale(ImageProcessor ip) {
   if (newWindow) {
     Rectangle r = ip.getRoi();
     ImagePlus imp2 = imp.createImagePlus();
     imp2.setProcessor(title, ip.resize(newWidth, newHeight));
     Calibration cal = imp2.getCalibration();
     if (cal.scaled()) {
       cal.pixelWidth *= 1.0 / xscale;
       cal.pixelHeight *= 1.0 / yscale;
     }
     imp2.show();
     imp.trimProcessor();
     imp2.trimProcessor();
     imp2.changes = true;
   } else {
     if (processStack && imp.getStackSize() > 1) {
       Undo.reset();
       StackProcessor sp = new StackProcessor(imp.getStack(), ip);
       sp.scale(xscale, yscale, bgValue);
     } else {
       ip.snapshot();
       Undo.setup(Undo.FILTER, imp);
       ip.setSnapshotCopyMode(true);
       ip.scale(xscale, yscale);
       ip.setSnapshotCopyMode(false);
     }
     imp.killRoi();
     imp.updateAndDraw();
     imp.changes = true;
   }
 }
예제 #2
0
 public void refreshForeground() {
   // Boundary for Foreground Selection
   setColor(0x444444);
   drawRect(8, 266, (w * 2) + 4, (h * 2) + 4);
   setColor(0x999999);
   drawRect(9, 267, (w * 2) + 2, (h * 2) + 2);
   setRoi(10, 268, w * 2, h * 2); // Paints the Foreground Color
   setColor(Toolbar.getForegroundColor());
   fill();
   imp.updateAndDraw();
 }
예제 #3
0
 public void refreshBackground() {
   // Boundary for Background Selection
   setColor(0x444444);
   drawRect((w * 2) - 12, 276, (w * 2) + 4, (h * 2) + 4);
   setColor(0x999999);
   drawRect((w * 2) - 11, 277, (w * 2) + 2, (h * 2) + 2);
   setRoi((w * 2) - 10, 278, w * 2, h * 2); // Paints the Background Color
   setColor(Toolbar.getBackgroundColor());
   fill();
   imp.updateAndDraw();
 }
예제 #4
0
 public void run() {
   while (!done) {
     synchronized (this) {
       try {
         wait();
       } catch (InterruptedException e) {
       }
       reset(imp, ip); // GL
       apply(imp, ip); // GL
       imp.updateAndDraw(); // GL
     }
   }
 }
예제 #5
0
    public void actionPerformed(ActionEvent e) {
      Button b = (Button) e.getSource();
      if (b == null) return;

      boolean imageThere = checkImage();

      if (imageThere) {
        if (b == originalB) {
          reset(imp, ip);
          filteredB.setEnabled(true);
        } else if (b == filteredB) {
          apply(imp, ip);
        } else if (b == sampleB) {
          reset(imp, ip);
          sample();
          apply(imp, ip);
        } else if (b == stackB) {
          applyStack();
        } else if (b == helpB) {
          IJ.showMessage(
              "Help",
              "Threshold Colour  v1.0\n \n"
                  + "Modification of Bob Dougherty's BandPass2 plugin by G.Landini to\n"
                  + "threshold 24 bit RGB images based on Hue, Saturation and Brightness\n"
                  + "or Red, Green and Blue components.\n \n"
                  + "Pass: Band-pass filter (anything within range is displayed).\n \n"
                  + "Stop: Band-reject filter (anything within range is NOT displayed).\n \n"
                  + "Original: Shows the original image and updates the buffer when\n"
                  + " switching to another image.\n \n"
                  + "Filtered: Shows the filtered image.\n \n"
                  + "Stack: Processes the rest of the slices in the stack (if any)\n"
                  + " using the current settings.\n \n"
                  + "Threshold: Shows the object/background in the foreground and\n"
                  + " background colours selected in the ImageJ toolbar.\n \n"
                  + "Invert: Swaps the fore/background colours.\n \n"
                  + "Sample: (experimental) Sets the ranges of the filters based on the\n"
                  + " pixel value componentd in a rectangular, user-defined, ROI.\n \n"
                  + "HSB RGB: Selects HSB or RGB space and resets all the filters.\n \n"
                  + "Note that the \'thresholded\' image is RGB, not 8 bit grey.");
        }
        updatePlot();
        updateLabels();
        imp.updateAndDraw();
      } else {
        IJ.beep();
        IJ.showStatus("No Image");
      }
      notify();
    }
예제 #6
0
    ImageProcessor setup(ImagePlus imp) {

      ImageProcessor ip;
      int type = imp.getType();
      if (type != ImagePlus.COLOR_RGB) return null;
      ip = imp.getProcessor();
      int id = imp.getID();
      int slice = imp.getCurrentSlice();

      if ((id != previousImageID) | (slice != previousSlice) | (flag)) {
        flag = false; // if true, flags a change from HSB to RGB or viceversa
        numSlices = imp.getStackSize();
        stack = imp.getStack();
        width = stack.getWidth();
        height = stack.getHeight();
        numPixels = width * height;

        hSource = new byte[numPixels];
        sSource = new byte[numPixels];
        bSource = new byte[numPixels];

        // restore = (int[])ip.getPixelsCopy(); //This runs into trouble sometimes, so do it the
        // long way:
        int[] temp = (int[]) ip.getPixels();
        restore = new int[numPixels];
        for (int i = 0; i < numPixels; i++) restore[i] = temp[i];

        fillMask = new int[numPixels];

        // Get hsb or rgb from image.
        ColorProcessor cp = (ColorProcessor) ip;
        IJ.showStatus("Gathering data");

        if (isRGB) cp.getRGB(hSource, sSource, bSource);
        else cp.getHSB(hSource, sSource, bSource);

        IJ.showStatus("done");

        // Create a spectrum ColorModel for the Hue histogram plot.
        Color c;
        byte[] reds = new byte[256];
        byte[] greens = new byte[256];
        byte[] blues = new byte[256];
        for (int i = 0; i < 256; i++) {
          c = Color.getHSBColor(i / 255f, 1f, 1f);

          reds[i] = (byte) c.getRed();
          greens[i] = (byte) c.getGreen();
          blues[i] = (byte) c.getBlue();
        }
        ColorModel cm = new IndexColorModel(8, 256, reds, greens, blues);

        // Make an image with just the hue from the RGB image and the spectrum LUT.
        // This is just for a hue histogram for the plot.  Do not show it.
        // ByteProcessor bpHue = new ByteProcessor(width,height,h,cm);
        ByteProcessor bpHue = new ByteProcessor(width, height, hSource, cm);
        ImagePlus impHue = new ImagePlus("Hue", bpHue);
        // impHue.show();

        ByteProcessor bpSat = new ByteProcessor(width, height, sSource, cm);
        ImagePlus impSat = new ImagePlus("Sat", bpSat);
        // impSat.show();

        ByteProcessor bpBri = new ByteProcessor(width, height, bSource, cm);
        ImagePlus impBri = new ImagePlus("Bri", bpBri);
        // impBri.show();

        plot.setHistogram(impHue, 0);
        splot.setHistogram(impSat, 1);
        bplot.setHistogram(impBri, 2);

        updateLabels();
        updatePlot();
        updateScrollBars();
        imp.updateAndDraw();
      }
      previousImageID = id;
      previousSlice = slice;
      return ip;
    }
예제 #7
0
  /*------------------------------------------------------------------*/
  void doIt(ImageProcessor ip) {
    int width = ip.getWidth();
    int height = ip.getHeight();
    double hLine[] = new double[width];
    double vLine[] = new double[height];

    if (!(ip.getPixels() instanceof float[])) {
      throw new IllegalArgumentException("Float image required");
    }
    switch (operation) {
      case GRADIENT_MAGNITUDE:
        {
          ImageProcessor h = ip.duplicate();
          ImageProcessor v = ip.duplicate();
          float[] floatPixels = (float[]) ip.getPixels();
          float[] floatPixelsH = (float[]) h.getPixels();
          float[] floatPixelsV = (float[]) v.getPixels();

          getHorizontalGradient(h, FLT_EPSILON);
          getVerticalGradient(v, FLT_EPSILON);
          for (int y = 0, k = 0; (y < height); y++) {
            for (int x = 0; (x < width); x++, k++) {
              floatPixels[k] =
                  (float)
                      Math.sqrt(
                          floatPixelsH[k] * floatPixelsH[k] + floatPixelsV[k] * floatPixelsV[k]);
            }
            stepProgressBar();
          }
        }
        break;
      case GRADIENT_DIRECTION:
        {
          ImageProcessor h = ip.duplicate();
          ImageProcessor v = ip.duplicate();
          float[] floatPixels = (float[]) ip.getPixels();
          float[] floatPixelsH = (float[]) h.getPixels();
          float[] floatPixelsV = (float[]) v.getPixels();

          getHorizontalGradient(h, FLT_EPSILON);
          getVerticalGradient(v, FLT_EPSILON);
          for (int y = 0, k = 0; (y < height); y++) {
            for (int x = 0; (x < width); x++, k++) {
              floatPixels[k] = (float) Math.atan2(floatPixelsH[k], floatPixelsV[k]);
            }
            stepProgressBar();
          }
        }
        break;
      case LAPLACIAN:
        {
          ImageProcessor hh = ip.duplicate();
          ImageProcessor vv = ip.duplicate();
          float[] floatPixels = (float[]) ip.getPixels();
          float[] floatPixelsHH = (float[]) hh.getPixels();
          float[] floatPixelsVV = (float[]) vv.getPixels();

          getHorizontalHessian(hh, FLT_EPSILON);
          getVerticalHessian(vv, FLT_EPSILON);
          for (int y = 0, k = 0; (y < height); y++) {
            for (int x = 0; (x < width); x++, k++) {
              floatPixels[k] = (float) (floatPixelsHH[k] + floatPixelsVV[k]);
            }
            stepProgressBar();
          }
        }
        break;
      case LARGEST_HESSIAN:
        {
          ImageProcessor hh = ip.duplicate();
          ImageProcessor vv = ip.duplicate();
          ImageProcessor hv = ip.duplicate();
          float[] floatPixels = (float[]) ip.getPixels();
          float[] floatPixelsHH = (float[]) hh.getPixels();
          float[] floatPixelsVV = (float[]) vv.getPixels();
          float[] floatPixelsHV = (float[]) hv.getPixels();

          getHorizontalHessian(hh, FLT_EPSILON);
          getVerticalHessian(vv, FLT_EPSILON);
          getCrossHessian(hv, FLT_EPSILON);
          for (int y = 0, k = 0; (y < height); y++) {
            for (int x = 0; (x < width); x++, k++) {
              floatPixels[k] =
                  (float)
                      (0.5
                          * (floatPixelsHH[k]
                              + floatPixelsVV[k]
                              + Math.sqrt(
                                  4.0 * floatPixelsHV[k] * floatPixelsHV[k]
                                      + (floatPixelsHH[k] - floatPixelsVV[k])
                                          * (floatPixelsHH[k] - floatPixelsVV[k]))));
            }
            stepProgressBar();
          }
        }
        break;
      case SMALLEST_HESSIAN:
        {
          ImageProcessor hh = ip.duplicate();
          ImageProcessor vv = ip.duplicate();
          ImageProcessor hv = ip.duplicate();
          float[] floatPixels = (float[]) ip.getPixels();
          float[] floatPixelsHH = (float[]) hh.getPixels();
          float[] floatPixelsVV = (float[]) vv.getPixels();
          float[] floatPixelsHV = (float[]) hv.getPixels();

          getHorizontalHessian(hh, FLT_EPSILON);
          getVerticalHessian(vv, FLT_EPSILON);
          getCrossHessian(hv, FLT_EPSILON);
          for (int y = 0, k = 0; (y < height); y++) {
            for (int x = 0; (x < width); x++, k++) {
              floatPixels[k] =
                  (float)
                      (0.5
                          * (floatPixelsHH[k]
                              + floatPixelsVV[k]
                              - Math.sqrt(
                                  4.0 * floatPixelsHV[k] * floatPixelsHV[k]
                                      + (floatPixelsHH[k] - floatPixelsVV[k])
                                          * (floatPixelsHH[k] - floatPixelsVV[k]))));
            }
            stepProgressBar();
          }
        }
        break;
      case HESSIAN_ORIENTATION:
        {
          ImageProcessor hh = ip.duplicate();
          ImageProcessor vv = ip.duplicate();
          ImageProcessor hv = ip.duplicate();
          float[] floatPixels = (float[]) ip.getPixels();
          float[] floatPixelsHH = (float[]) hh.getPixels();
          float[] floatPixelsVV = (float[]) vv.getPixels();
          float[] floatPixelsHV = (float[]) hv.getPixels();

          getHorizontalHessian(hh, FLT_EPSILON);
          getVerticalHessian(vv, FLT_EPSILON);
          getCrossHessian(hv, FLT_EPSILON);
          for (int y = 0, k = 0; (y < height); y++) {
            for (int x = 0; (x < width); x++, k++) {
              if (floatPixelsHV[k] < 0.0) {
                floatPixels[k] =
                    (float)
                        (-0.5
                            * Math.acos(
                                (floatPixelsHH[k] - floatPixelsVV[k])
                                    / Math.sqrt(
                                        4.0 * floatPixelsHV[k] * floatPixelsHV[k]
                                            + (floatPixelsHH[k] - floatPixelsVV[k])
                                                * (floatPixelsHH[k] - floatPixelsVV[k]))));
              } else {
                floatPixels[k] =
                    (float)
                        (0.5
                            * Math.acos(
                                (floatPixelsHH[k] - floatPixelsVV[k])
                                    / Math.sqrt(
                                        4.0 * floatPixelsHV[k] * floatPixelsHV[k]
                                            + (floatPixelsHH[k] - floatPixelsVV[k])
                                                * (floatPixelsHH[k] - floatPixelsVV[k]))));
              }
            }
            stepProgressBar();
          }
        }
        break;
      default:
        throw new IllegalArgumentException("Invalid operation");
    }
    ip.resetMinAndMax();
    imp.updateAndDraw();
  } /* end doIt */