// Method to update location
 public void update() {
   // Update velocity
   vel.add(acc);
   // Limit speed
   vel.limit(maxspeed);
   loc.add(vel);
   // Reset accelertion to 0 each cycle
   acc.mult(0);
 }
    public void avoid(ArrayList obstacles) {

      // Make a vector that will be the position of the object
      // relative to the Boid rotated in the direction of boid's velocity
      PVector closestRotated = new PVector(sight + 1, sight + 1);
      float closestDistance = 99999;
      Obstacle avoid = null;

      // Let's look at each obstacle
      for (int i = 0; i < obstacles.size(); i++) {
        Obstacle o = (Obstacle) obstacles.get(i);

        float d = PVector.dist(loc, o.loc);
        PVector dir = vel.get();
        dir.normalize();
        PVector diff = PVector.sub(o.loc, loc);

        // Now we use the dot product to rotate the vector that points from boid to obstacle
        // Velocity is the new x-axis
        PVector rotated = new PVector(diff.dot(dir), diff.dot(getNormal(dir)));

        // Is the obstacle in our path?
        if (PApplet.abs(rotated.y) < (o.radius + r)) {
          // Is it the closest obstacle?
          if ((rotated.x > 0) && (rotated.x < closestRotated.x)) {
            closestRotated = rotated;
            avoid = o;
          }
        }
      }

      // Can we actually see the closest one?
      if (PApplet.abs(closestRotated.x) < sight) {

        // The desired vector should point away from the obstacle
        // The closer to the obstacle, the more it should steer
        PVector desired =
            new PVector(closestRotated.x, -closestRotated.y * sight / closestRotated.x);
        desired.normalize();
        desired.mult(closestDistance);
        desired.limit(maxspeed);
        // Rotate back to the regular coordinate system
        rotateVector(desired, vel.heading2D());

        // Draw some debugging stuff
        if (debug) {
          stroke(0);
          line(loc.x, loc.y, loc.x + desired.x * 10, loc.y + desired.y * 10);
          avoid.highlight(true);
        }

        // Apply Reynolds steering rules
        desired.sub(vel);
        desired.limit(maxforce);
        acc.add(desired);
      }
    }
 // Function to update location
 public void update() {
   // As long as we aren't dragging the pendulum, let it swing!
   if (!dragging) {
     float G = 0.4f; // Arbitrary universal gravitational constant
     theta_acc =
         (-1 * G / r)
             * sin(
                 theta); // Calculate acceleration (see:
                         // http://www.myphysicslab.com/pendulum1.html)
     theta_vel += theta_acc; // Increment velocity
     theta_vel *= damping; // Arbitrary damping
     theta += theta_vel; // Increment theta
   }
   loc.set(r * sin(theta), r * cos(theta), 0); // Polar to cartesian conversion
   loc.add(origin); // Make sure the location is relative to the pendulum's origin
 }
예제 #4
0
 public void setAcceleration(PVector acceleration) {
   this.acceleration = acceleration;
   velocity.add(acceleration);
   position.add(velocity);
 }
예제 #5
0
파일: GUI.java 프로젝트: BNHeadrick/AFM-GUI
    public void checkThirtyDegreeRule(
        ArrayList<Cam> cameras, ArrayList<Character> characters, int selectedIdx) {
      if (cameras == null || cameras.isEmpty()) {
        println("No cameras in the scene!");
      }

      if (characters.size() != 2) {
        println("Only two characters supported for now");
        // TODO (sanjeet): Hack! Fix this once more characters are allowed
      }

      Cam selectedCamera = cameras.get(selectedIdx);

      // TODO The characters.get results in a runtime error because there aren't currently any
      // characters allocated in the input file.
      Character ch1 = characters.get(0);
      Character ch2 = characters.get(1);

      // Obtaining (x,y,z) for characters and selected camera
      PVector ch1Location = ch1.getTranslation();
      PVector ch2Location = ch2.getTranslation();
      PVector selectedCameraLocation = selectedCamera.getTranslation();

      PVector cameraPoint = new PVector();
      cameraPoint.add(selectedCameraLocation);
      for (int i = 0; i < 100; i++) {
        cameraPoint.add(selectedCamera.getZAxis());
      }
      PVector intersection =
          getTwoLinesIntersection(
              new PVector(ch1Location.x, ch1Location.z),
              new PVector(ch2Location.x, ch2Location.z),
              new PVector(selectedCameraLocation.x, selectedCameraLocation.z),
              new PVector(cameraPoint.x, cameraPoint.z));

      PVector diff = PVector.sub(selectedCameraLocation, intersection);
      diff.normalize();
      FloatBuffer fb = selectedCamera.modelViewMatrix;
      float[] mat = fb.array();
      float[] fbMatrix = new float[mat.length];
      for (int i = 0; i < fbMatrix.length; i++) {
        fbMatrix[i] = mat[i];
      }
      fbMatrix[0] = -diff.x;
      fbMatrix[1] = diff.y;
      fbMatrix[2] = -diff.z;
      fbMatrix[9] = diff.x;
      fbMatrix[10] = diff.y;
      fbMatrix[11] = diff.z;
      fbMatrix[13] = intersection.x;
      fbMatrix[14] = intersection.y;
      fbMatrix[15] = intersection.z;
      PMatrix3D matrix = new PMatrix3D();
      matrix.set(fbMatrix);
      matrix.transpose();
      pushMatrix();
      applyMatrix(matrix);
      rotateY(radians(30));
      line(0, 0, 0, 0, 0, 1000);
      rotateY(radians(-2 * 30));
      line(0, 0, 0, 0, 0, 1000);
      popMatrix();

      for (int i = 0; i < cameras.size(); i++) {
        if (i == selectedIdx) {
          continue;
        }

        if (!cameras.get(i).isInView(ch1Location) && !cameras.get(i).isInView(ch2Location)) {
          continue;
        }
        PVector currCamLocation = cameras.get(i).getTranslation();
        PVector vect1 = PVector.sub(currCamLocation, intersection);
        PVector vect2 = PVector.sub(selectedCameraLocation, intersection);
        float dotP = vect1.dot(vect2) / (vect1.mag() * vect2.mag());
        if (acos(dotP) <= PI / 6) {
          cameras.get(i).setColor(255, 0, 0);
        } else {
          cameras.get(i).setColor(0, 0, 255);
        }
      }
    }