private static ArrayList<SuggestedWordInfo> getSuggestionsInfoListWithDebugInfo( final String typedWord, final ArrayList<SuggestedWordInfo> suggestions) { final SuggestedWordInfo typedWordInfo = suggestions.get(0); typedWordInfo.setDebugString("+"); final int suggestionsSize = suggestions.size(); final ArrayList<SuggestedWordInfo> suggestionsList = CollectionUtils.newArrayList(suggestionsSize); suggestionsList.add(typedWordInfo); // Note: i here is the index in mScores[], but the index in mSuggestions is one more // than i because we added the typed word to mSuggestions without touching mScores. for (int i = 0; i < suggestionsSize - 1; ++i) { final SuggestedWordInfo cur = suggestions.get(i + 1); final float normalizedScore = BinaryDictionary.calcNormalizedScore(typedWord, cur.toString(), cur.mScore); final String scoreInfoString; if (normalizedScore > 0) { scoreInfoString = String.format(Locale.ROOT, "%d (%4.2f)", cur.mScore, normalizedScore); } else { scoreInfoString = Integer.toString(cur.mScore); } cur.setDebugString(scoreInfoString); suggestionsList.add(cur); } return suggestionsList; }
private ArrayList<WeightedString> readShortcuts(final int terminalId) { if (mShortcutAddressTable.get(0, terminalId) == SparseTable.NOT_EXIST) return null; final ArrayList<WeightedString> ret = CollectionUtils.newArrayList(); final int posOfShortcuts = mShortcutAddressTable.get(FormatSpec.SHORTCUT_CONTENT_INDEX, terminalId); mShortcutBuffer.position(posOfShortcuts); while (true) { final int flags = mShortcutBuffer.readUnsignedByte(); final String word = CharEncoding.readString(mShortcutBuffer); ret.add(new WeightedString(word, flags & FormatSpec.FLAG_BIGRAM_SHORTCUT_ATTR_FREQUENCY)); if (0 == (flags & FormatSpec.FLAG_BIGRAM_SHORTCUT_ATTR_HAS_NEXT)) break; } return ret; }
// Retrieves suggestions for the batch input // and calls the callback function with the suggestions. private void getSuggestedWordsForBatchInput( final WordComposer wordComposer, final String prevWordForBigram, final ProximityInfo proximityInfo, final boolean blockOffensiveWords, final int[] additionalFeaturesOptions, final int sessionId, final int sequenceNumber, final OnGetSuggestedWordsCallback callback) { final BoundedTreeSet suggestionsSet = new BoundedTreeSet(sSuggestedWordInfoComparator, MAX_SUGGESTIONS); // At second character typed, search the unigrams (scores being affected by bigrams) for (final String key : mDictionaries.keySet()) { final Dictionary dictionary = mDictionaries.get(key); suggestionsSet.addAll( dictionary.getSuggestionsWithSessionId( wordComposer, prevWordForBigram, proximityInfo, blockOffensiveWords, additionalFeaturesOptions, sessionId)); } for (SuggestedWordInfo wordInfo : suggestionsSet) { LatinImeLogger.onAddSuggestedWord(wordInfo.mWord, wordInfo.mSourceDict.mDictType); } final ArrayList<SuggestedWordInfo> suggestionsContainer = CollectionUtils.newArrayList(suggestionsSet); final int suggestionsCount = suggestionsContainer.size(); final boolean isFirstCharCapitalized = wordComposer.wasShiftedNoLock(); final boolean isAllUpperCase = wordComposer.isAllUpperCase(); if (isFirstCharCapitalized || isAllUpperCase) { for (int i = 0; i < suggestionsCount; ++i) { final SuggestedWordInfo wordInfo = suggestionsContainer.get(i); final SuggestedWordInfo transformedWordInfo = getTransformedSuggestedWordInfo( wordInfo, mLocale, isAllUpperCase, isFirstCharCapitalized, 0 /* trailingSingleQuotesCount */); suggestionsContainer.set(i, transformedWordInfo); } } if (suggestionsContainer.size() > 1 && TextUtils.equals( suggestionsContainer.get(0).mWord, wordComposer.getRejectedBatchModeSuggestion())) { final SuggestedWordInfo rejected = suggestionsContainer.remove(0); suggestionsContainer.add(1, rejected); } SuggestedWordInfo.removeDups(suggestionsContainer); // For some reason some suggestions with MIN_VALUE are making their way here. // TODO: Find a more robust way to detect distractors. for (int i = suggestionsContainer.size() - 1; i >= 0; --i) { if (suggestionsContainer.get(i).mScore < SUPPRESS_SUGGEST_THRESHOLD) { suggestionsContainer.remove(i); } } // In the batch input mode, the most relevant suggested word should act as a "typed word" // (typedWordValid=true), not as an "auto correct word" (willAutoCorrect=false). callback.onGetSuggestedWords( new SuggestedWords( suggestionsContainer, true /* typedWordValid */, false /* willAutoCorrect */, false /* isPunctuationSuggestions */, false /* isObsoleteSuggestions */, false /* isPrediction */, sequenceNumber)); }
// Retrieves suggestions for the typing input // and calls the callback function with the suggestions. private void getSuggestedWordsForTypingInput( final WordComposer wordComposer, final String prevWordForBigram, final ProximityInfo proximityInfo, final boolean blockOffensiveWords, final boolean isCorrectionEnabled, final int[] additionalFeaturesOptions, final int sequenceNumber, final OnGetSuggestedWordsCallback callback) { final int trailingSingleQuotesCount = wordComposer.trailingSingleQuotesCount(); final BoundedTreeSet suggestionsSet = new BoundedTreeSet(sSuggestedWordInfoComparator, MAX_SUGGESTIONS); final String typedWord = wordComposer.getTypedWord(); final String consideredWord = trailingSingleQuotesCount > 0 ? typedWord.substring(0, typedWord.length() - trailingSingleQuotesCount) : typedWord; LatinImeLogger.onAddSuggestedWord(typedWord, Dictionary.TYPE_USER_TYPED); final WordComposer wordComposerForLookup; if (trailingSingleQuotesCount > 0) { wordComposerForLookup = new WordComposer(wordComposer); for (int i = trailingSingleQuotesCount - 1; i >= 0; --i) { wordComposerForLookup.deleteLast(); } } else { wordComposerForLookup = wordComposer; } for (final String key : mDictionaries.keySet()) { final Dictionary dictionary = mDictionaries.get(key); suggestionsSet.addAll( dictionary.getSuggestions( wordComposerForLookup, prevWordForBigram, proximityInfo, blockOffensiveWords, additionalFeaturesOptions)); } final String whitelistedWord; if (suggestionsSet.isEmpty()) { whitelistedWord = null; } else if (SuggestedWordInfo.KIND_WHITELIST != suggestionsSet.first().mKind) { whitelistedWord = null; } else { whitelistedWord = suggestionsSet.first().mWord; } // The word can be auto-corrected if it has a whitelist entry that is not itself, // or if it's a 2+ characters non-word (i.e. it's not in the dictionary). final boolean allowsToBeAutoCorrected = (null != whitelistedWord && !whitelistedWord.equals(consideredWord)) || (consideredWord.length() > 1 && !AutoCorrectionUtils.isValidWord( this, consideredWord, wordComposer.isFirstCharCapitalized())); final boolean hasAutoCorrection; // TODO: using isCorrectionEnabled here is not very good. It's probably useless, because // any attempt to do auto-correction is already shielded with a test for this flag; at the // same time, it feels wrong that the SuggestedWord object includes information about // the current settings. It may also be useful to know, when the setting is off, whether // the word *would* have been auto-corrected. if (!isCorrectionEnabled || !allowsToBeAutoCorrected || !wordComposer.isComposingWord() || suggestionsSet.isEmpty() || wordComposer.hasDigits() || wordComposer.isMostlyCaps() || wordComposer.isResumed() || !hasMainDictionary() || SuggestedWordInfo.KIND_SHORTCUT == suggestionsSet.first().mKind) { // If we don't have a main dictionary, we never want to auto-correct. The reason for // this is, the user may have a contact whose name happens to match a valid word in // their language, and it will unexpectedly auto-correct. For example, if the user // types in English with no dictionary and has a "Will" in their contact list, "will" // would always auto-correct to "Will" which is unwanted. Hence, no main dict => no // auto-correct. // Also, shortcuts should never auto-correct unless they are whitelist entries. // TODO: we may want to have shortcut-only entries auto-correct in the future. hasAutoCorrection = false; } else { hasAutoCorrection = AutoCorrectionUtils.suggestionExceedsAutoCorrectionThreshold( suggestionsSet.first(), consideredWord, mAutoCorrectionThreshold); } final ArrayList<SuggestedWordInfo> suggestionsContainer = CollectionUtils.newArrayList(suggestionsSet); final int suggestionsCount = suggestionsContainer.size(); final boolean isFirstCharCapitalized = wordComposer.isFirstCharCapitalized(); final boolean isAllUpperCase = wordComposer.isAllUpperCase(); if (isFirstCharCapitalized || isAllUpperCase || 0 != trailingSingleQuotesCount) { for (int i = 0; i < suggestionsCount; ++i) { final SuggestedWordInfo wordInfo = suggestionsContainer.get(i); final SuggestedWordInfo transformedWordInfo = getTransformedSuggestedWordInfo( wordInfo, mLocale, isAllUpperCase, isFirstCharCapitalized, trailingSingleQuotesCount); suggestionsContainer.set(i, transformedWordInfo); } } for (int i = 0; i < suggestionsCount; ++i) { final SuggestedWordInfo wordInfo = suggestionsContainer.get(i); LatinImeLogger.onAddSuggestedWord(wordInfo.mWord.toString(), wordInfo.mSourceDict.mDictType); } if (!TextUtils.isEmpty(typedWord)) { suggestionsContainer.add( 0, new SuggestedWordInfo( typedWord, SuggestedWordInfo.MAX_SCORE, SuggestedWordInfo.KIND_TYPED, Dictionary.DICTIONARY_USER_TYPED, SuggestedWordInfo.NOT_AN_INDEX /* indexOfTouchPointOfSecondWord */, SuggestedWordInfo.NOT_A_CONFIDENCE /* autoCommitFirstWordConfidence */)); } SuggestedWordInfo.removeDups(suggestionsContainer); final ArrayList<SuggestedWordInfo> suggestionsList; if (DBG && !suggestionsContainer.isEmpty()) { suggestionsList = getSuggestionsInfoListWithDebugInfo(typedWord, suggestionsContainer); } else { suggestionsList = suggestionsContainer; } callback.onGetSuggestedWords( new SuggestedWords( suggestionsList, // TODO: this first argument is lying. If this is a whitelisted word which is an // actual word, it says typedWordValid = false, which looks wrong. We should either // rename the attribute or change the value. !allowsToBeAutoCorrected /* typedWordValid */, hasAutoCorrection, /* willAutoCorrect */ false /* isPunctuationSuggestions */, false /* isObsoleteSuggestions */, !wordComposer.isComposingWord() /* isPrediction */, sequenceNumber)); }