void lineToArea(ImagePlus imp) { Roi roi = imp.getRoi(); if (roi == null || !roi.isLine()) { IJ.error("Line to Area", "Line selection required"); return; } Undo.setup(Undo.ROI, imp); Roi roi2 = null; if (roi.getType() == Roi.LINE) { double width = roi.getStrokeWidth(); if (width <= 1.0) roi.setStrokeWidth(1.0000001); FloatPolygon p = roi.getFloatPolygon(); roi.setStrokeWidth(width); roi2 = new PolygonRoi(p, Roi.POLYGON); roi2.setDrawOffset(roi.getDrawOffset()); } else { ImageProcessor ip2 = new ByteProcessor(imp.getWidth(), imp.getHeight()); ip2.setColor(255); roi.drawPixels(ip2); // new ImagePlus("ip2", ip2.duplicate()).show(); ip2.setThreshold(255, 255, ImageProcessor.NO_LUT_UPDATE); ThresholdToSelection tts = new ThresholdToSelection(); roi2 = tts.convert(ip2); } transferProperties(roi, roi2); roi2.setStrokeWidth(0); Color c = roi2.getStrokeColor(); if (c != null) // remove any transparency roi2.setStrokeColor(new Color(c.getRed(), c.getGreen(), c.getBlue())); imp.setRoi(roi2); Roi.previousRoi = (Roi) roi.clone(); }
void createMask(ImagePlus imp) { Roi roi = imp.getRoi(); boolean useInvertingLut = Prefs.useInvertingLut; Prefs.useInvertingLut = false; if (roi == null || !(roi.isArea() || roi.getType() == Roi.POINT)) { createMaskFromThreshold(imp); Prefs.useInvertingLut = useInvertingLut; return; } ImagePlus maskImp = null; Frame frame = WindowManager.getFrame("Mask"); if (frame != null && (frame instanceof ImageWindow)) maskImp = ((ImageWindow) frame).getImagePlus(); if (maskImp == null) { ImageProcessor ip = new ByteProcessor(imp.getWidth(), imp.getHeight()); if (!Prefs.blackBackground) ip.invertLut(); maskImp = new ImagePlus("Mask", ip); maskImp.show(); } ImageProcessor ip = maskImp.getProcessor(); ip.setRoi(roi); ip.setValue(255); ip.fill(ip.getMask()); maskImp.updateAndDraw(); Prefs.useInvertingLut = useInvertingLut; }
public void run(String arg) { imp = WindowManager.getCurrentImage(); if (arg.equals("add")) { addToRoiManager(imp); return; } if (imp == null) { IJ.noImage(); return; } if (arg.equals("all")) imp.setRoi(0, 0, imp.getWidth(), imp.getHeight()); else if (arg.equals("none")) imp.killRoi(); else if (arg.equals("restore")) imp.restoreRoi(); else if (arg.equals("spline")) fitSpline(); else if (arg.equals("circle")) fitCircle(imp); else if (arg.equals("ellipse")) createEllipse(imp); else if (arg.equals("hull")) convexHull(imp); else if (arg.equals("mask")) createMask(imp); else if (arg.equals("from")) createSelectionFromMask(imp); else if (arg.equals("inverse")) invert(imp); else if (arg.equals("toarea")) lineToArea(imp); else if (arg.equals("toline")) areaToLine(imp); else if (arg.equals("properties")) { setProperties("Properties ", imp.getRoi()); imp.draw(); } else if (arg.equals("band")) makeBand(imp); else if (arg.equals("tobox")) toBoundingBox(imp); else runMacro(arg); }
/** Generate output image whose type is same as input image. */ private ImagePlus makeOutputImage(ImagePlus imp, FloatProcessor fp, int ptype) { int width = imp.getWidth(); int height = imp.getHeight(); float[] pixels = (float[]) fp.getPixels(); ImageProcessor oip = null; // Create output image consistent w/ type of input image. int size = pixels.length; switch (ptype) { case BYTE_TYPE: oip = imp.getProcessor().createProcessor(width, height); byte[] pixels8 = (byte[]) oip.getPixels(); for (int i = 0; i < size; i++) pixels8[i] = (byte) pixels[i]; break; case SHORT_TYPE: oip = imp.getProcessor().createProcessor(width, height); short[] pixels16 = (short[]) oip.getPixels(); for (int i = 0; i < size; i++) pixels16[i] = (short) pixels[i]; break; case FLOAT_TYPE: oip = new FloatProcessor(width, height, pixels, null); break; } // Adjust for display. // Calling this on non-ByteProcessors ensures image // processor is set up to correctly display image. oip.resetMinAndMax(); // Create new image plus object. Don't use // ImagePlus.createImagePlus here because there may be // attributes of input image that are not appropriate for // projection. return new ImagePlus(makeTitle(), oip); }
public boolean beadCalibration3d() { imp = IJ.getImage(); if (imp == null) { IJ.noImage(); return false; } else if (imp.getStackSize() == 1) { IJ.error("Stack required"); return false; } else if (imp.getType() != ImagePlus.GRAY8 && imp.getType() != ImagePlus.GRAY16) { // In order to support 32bit images, pict[] must be changed to float[], and getPixel(x, y); // requires a Float.intBitsToFloat() conversion IJ.error("8 or 16 bit greyscale image required"); return false; } width = imp.getWidth(); height = imp.getHeight(); nslices = imp.getStackSize(); imtitle = imp.getTitle(); models[0] = "*None*"; models[1] = "line"; models[2] = "2nd degree polynomial"; models[3] = "3rd degree polynomial"; models[4] = "4th degree polynomial"; GenericDialog gd = new GenericDialog("3D PALM calibration"); gd.addNumericField("Maximum FWHM (in px)", prefs.get("QuickPALM.3Dcal_fwhm", 20), 0); gd.addNumericField( "Particle local threshold (% maximum intensity)", prefs.get("QuickPALM.pthrsh", 20), 0); gd.addNumericField("Z-spacing (nm)", prefs.get("QuickPALM.z-step", 10), 2); gd.addNumericField("Calibration Z-smoothing (radius)", prefs.get("QuickPALM.window", 1), 0); gd.addChoice("Model", models, prefs.get("QuickPALM.model", models[3])); gd.addCheckbox( "Show divergence of bead positions against model", prefs.get("QuickPALM.3Dcal_showDivergence", false)); gd.addCheckbox("Show extra particle info", prefs.get("QuickPALM.3Dcal_showExtraInfo", false)); gd.addMessage("\n\nDon't forget to save the table in the end..."); gd.showDialog(); if (gd.wasCanceled()) return false; fwhm = gd.getNextNumber(); prefs.set("QuickPALM.QuickPALM.3Dcal_fwhm", fwhm); pthrsh = gd.getNextNumber() / 100; prefs.set("QuickPALM.pthrsh", pthrsh * 100); cal_z = gd.getNextNumber(); prefs.set("QuickPALM.z-step", cal_z); window = (int) gd.getNextNumber(); prefs.set("QuickPALM.window", window); model = gd.getNextChoice(); prefs.set("QuickPALM.model", model); part_divergence = gd.getNextBoolean(); prefs.set("QuickPALM.3Dcal_showDivergence", part_divergence); part_extrainfo = gd.getNextBoolean(); prefs.set("QuickPALM.3Dcal_showExtraInfo", part_extrainfo); return true; }
/** Performs actual projection using specified method. */ public void doProjection() { if (imp == null) return; sliceCount = 0; if (method < AVG_METHOD || method > MEDIAN_METHOD) method = AVG_METHOD; for (int slice = startSlice; slice <= stopSlice; slice += increment) sliceCount++; if (method == MEDIAN_METHOD) { projImage = doMedianProjection(); return; } // Create new float processor for projected pixels. FloatProcessor fp = new FloatProcessor(imp.getWidth(), imp.getHeight()); ImageStack stack = imp.getStack(); RayFunction rayFunc = getRayFunction(method, fp); if (IJ.debugMode == true) { IJ.log("\nProjecting stack from: " + startSlice + " to: " + stopSlice); } // Determine type of input image. Explicit determination of // processor type is required for subsequent pixel // manipulation. This approach is more efficient than the // more general use of ImageProcessor's getPixelValue and // putPixel methods. int ptype; if (stack.getProcessor(1) instanceof ByteProcessor) ptype = BYTE_TYPE; else if (stack.getProcessor(1) instanceof ShortProcessor) ptype = SHORT_TYPE; else if (stack.getProcessor(1) instanceof FloatProcessor) ptype = FLOAT_TYPE; else { IJ.error("Z Project", "Non-RGB stack required"); return; } // Do the projection. for (int n = startSlice; n <= stopSlice; n += increment) { IJ.showStatus("ZProjection " + color + ": " + n + "/" + stopSlice); IJ.showProgress(n - startSlice, stopSlice - startSlice); projectSlice(stack.getPixels(n), rayFunc, ptype); } // Finish up projection. if (method == SUM_METHOD) { fp.resetMinAndMax(); projImage = new ImagePlus(makeTitle(), fp); } else if (method == SD_METHOD) { rayFunc.postProcess(); fp.resetMinAndMax(); projImage = new ImagePlus(makeTitle(), fp); } else { rayFunc.postProcess(); projImage = makeOutputImage(imp, fp, ptype); } if (projImage == null) IJ.error("Z Project", "Error computing projection."); }
void invert(ImagePlus imp) { Roi roi = imp.getRoi(); if (roi == null || !roi.isArea()) { IJ.error("Inverse", "Area selection required"); return; } ShapeRoi s1, s2; if (roi instanceof ShapeRoi) s1 = (ShapeRoi) roi; else s1 = new ShapeRoi(roi); s2 = new ShapeRoi(new Roi(0, 0, imp.getWidth(), imp.getHeight())); imp.setRoi(s1.xor(s2)); }
void createMask(ImagePlus imp) { Roi roi = imp.getRoi(); boolean useInvertingLut = Prefs.useInvertingLut; Prefs.useInvertingLut = false; boolean selectAll = roi != null && roi.getType() == Roi.RECTANGLE && roi.getBounds().width == imp.getWidth() && roi.getBounds().height == imp.getHeight() && imp.isThreshold(); if (roi == null || !(roi.isArea() || roi.getType() == Roi.POINT) || selectAll) { createMaskFromThreshold(imp); Prefs.useInvertingLut = useInvertingLut; return; } ImagePlus maskImp = null; Frame frame = WindowManager.getFrame("Mask"); if (frame != null && (frame instanceof ImageWindow)) maskImp = ((ImageWindow) frame).getImagePlus(); if (maskImp == null) { ImageProcessor ip = new ByteProcessor(imp.getWidth(), imp.getHeight()); if (!Prefs.blackBackground) ip.invertLut(); maskImp = new ImagePlus("Mask", ip); maskImp.show(); } ImageProcessor ip = maskImp.getProcessor(); ip.setRoi(roi); ip.setValue(255); ip.fill(ip.getMask()); Calibration cal = imp.getCalibration(); if (cal.scaled()) { Calibration cal2 = maskImp.getCalibration(); cal2.pixelWidth = cal.pixelWidth; cal2.pixelHeight = cal.pixelHeight; cal2.setUnit(cal.getUnit()); } maskImp.updateAndRepaintWindow(); Prefs.useInvertingLut = useInvertingLut; }
void lineToArea(ImagePlus imp) { Roi roi = imp.getRoi(); if (roi == null || !roi.isLine()) { IJ.error("Line to Area", "Line selection required"); return; } ImageProcessor ip2 = new ByteProcessor(imp.getWidth(), imp.getHeight()); ip2.setColor(255); if (roi.getType() == Roi.LINE && roi.getStrokeWidth() > 1) ip2.fillPolygon(roi.getPolygon()); else roi.drawPixels(ip2); // new ImagePlus("ip2", ip2.duplicate()).show(); ip2.setThreshold(255, 255, ImageProcessor.NO_LUT_UPDATE); ThresholdToSelection tts = new ThresholdToSelection(); Roi roi2 = tts.convert(ip2); imp.setRoi(roi2); Roi.previousRoi = (Roi) roi.clone(); }
private void doRGBProjection(ImageStack stack) { ImageStack[] channels = ChannelSplitter.splitRGB(stack, true); ImagePlus red = new ImagePlus("Red", channels[0]); ImagePlus green = new ImagePlus("Green", channels[1]); ImagePlus blue = new ImagePlus("Blue", channels[2]); imp.unlock(); ImagePlus saveImp = imp; imp = red; color = "(red)"; doProjection(); ImagePlus red2 = projImage; imp = green; color = "(green)"; doProjection(); ImagePlus green2 = projImage; imp = blue; color = "(blue)"; doProjection(); ImagePlus blue2 = projImage; int w = red2.getWidth(), h = red2.getHeight(), d = red2.getStackSize(); if (method == SD_METHOD) { ImageProcessor r = red2.getProcessor(); ImageProcessor g = green2.getProcessor(); ImageProcessor b = blue2.getProcessor(); double max = 0; double rmax = r.getStatistics().max; if (rmax > max) max = rmax; double gmax = g.getStatistics().max; if (gmax > max) max = gmax; double bmax = b.getStatistics().max; if (bmax > max) max = bmax; double scale = 255 / max; r.multiply(scale); g.multiply(scale); b.multiply(scale); red2.setProcessor(r.convertToByte(false)); green2.setProcessor(g.convertToByte(false)); blue2.setProcessor(b.convertToByte(false)); } RGBStackMerge merge = new RGBStackMerge(); ImageStack stack2 = merge.mergeStacks(w, h, d, red2.getStack(), green2.getStack(), blue2.getStack(), true); imp = saveImp; projImage = new ImagePlus(makeTitle(), stack2); }
public void doHyperStackProjection(boolean allTimeFrames) { int start = startSlice; int stop = stopSlice; int firstFrame = 1; int lastFrame = imp.getNFrames(); if (!allTimeFrames) firstFrame = lastFrame = imp.getFrame(); ImageStack stack = new ImageStack(imp.getWidth(), imp.getHeight()); int channels = imp.getNChannels(); int slices = imp.getNSlices(); if (slices == 1) { slices = imp.getNFrames(); firstFrame = lastFrame = 1; } int frames = lastFrame - firstFrame + 1; increment = channels; boolean rgb = imp.getBitDepth() == 24; for (int frame = firstFrame; frame <= lastFrame; frame++) { for (int channel = 1; channel <= channels; channel++) { startSlice = (frame - 1) * channels * slices + (start - 1) * channels + channel; stopSlice = (frame - 1) * channels * slices + (stop - 1) * channels + channel; if (rgb) doHSRGBProjection(imp); else doProjection(); stack.addSlice(null, projImage.getProcessor()); } } projImage = new ImagePlus(makeTitle(), stack); projImage.setDimensions(channels, 1, frames); if (channels > 1) { projImage = new CompositeImage(projImage, 0); ((CompositeImage) projImage).copyLuts(imp); if (method == SUM_METHOD || method == SD_METHOD) ((CompositeImage) projImage).resetDisplayRanges(); } if (frames > 1) projImage.setOpenAsHyperStack(true); Overlay overlay = imp.getOverlay(); if (overlay != null) { startSlice = start; stopSlice = stop; if (imp.getType() == ImagePlus.COLOR_RGB) projImage.setOverlay(projectRGBHyperStackRois(overlay)); else projImage.setOverlay(projectHyperStackRois(overlay)); } IJ.showProgress(1, 1); }
// Finds the index of the upper right point that is guaranteed to be on convex hull int findFirstPoint(int[] xCoordinates, int[] yCoordinates, int n, ImagePlus imp) { int smallestY = imp.getHeight(); int x, y; for (int i = 0; i < n; i++) { y = yCoordinates[i]; if (y < smallestY) smallestY = y; } int smallestX = imp.getWidth(); int p1 = 0; for (int i = 0; i < n; i++) { x = xCoordinates[i]; y = yCoordinates[i]; if (y == smallestY && x < smallestX) { smallestX = x; p1 = i; } } return p1; }
private void makeBand(ImagePlus imp) { Roi roi = imp.getRoi(); if (roi == null) { noRoi("Make Band"); return; } if (!roi.isArea()) { IJ.error("Make Band", "Area selection required"); return; } Calibration cal = imp.getCalibration(); double pixels = bandSize; double size = pixels * cal.pixelWidth; int decimalPlaces = 0; if ((int) size != size) decimalPlaces = 2; GenericDialog gd = new GenericDialog("Make Band"); gd.addNumericField("Band Size:", size, decimalPlaces, 4, cal.getUnits()); gd.showDialog(); if (gd.wasCanceled()) return; size = gd.getNextNumber(); if (Double.isNaN(size)) { IJ.error("Make Band", "invalid number"); return; } int n = (int) Math.round(size / cal.pixelWidth); if (n > 255) { IJ.error("Make Band", "Cannot make bands wider that 255 pixels"); return; } int width = imp.getWidth(); int height = imp.getHeight(); Rectangle r = roi.getBounds(); ImageProcessor ip = roi.getMask(); if (ip == null) { ip = new ByteProcessor(r.width, r.height); ip.invert(); } ImageProcessor mask = new ByteProcessor(width, height); mask.insert(ip, r.x, r.y); ImagePlus edm = new ImagePlus("mask", mask); boolean saveBlackBackground = Prefs.blackBackground; Prefs.blackBackground = false; IJ.run(edm, "Distance Map", ""); Prefs.blackBackground = saveBlackBackground; ip = edm.getProcessor(); ip.setThreshold(0, n, ImageProcessor.NO_LUT_UPDATE); int xx = -1, yy = -1; for (int x = r.x; x < r.x + r.width; x++) { for (int y = r.y; y < r.y + r.height; y++) { if (ip.getPixel(x, y) < n) { xx = x; yy = y; break; } } if (xx >= 0 || yy >= 0) break; } int count = IJ.doWand(edm, xx, yy, 0, null); if (count <= 0) { IJ.error("Make Band", "Unable to make band"); return; } ShapeRoi roi2 = new ShapeRoi(edm.getRoi()); if (!(roi instanceof ShapeRoi)) roi = new ShapeRoi(roi); ShapeRoi roi1 = (ShapeRoi) roi; roi2 = roi2.not(roi1); imp.setRoi(roi2); bandSize = n; }
public void run(ImageProcessor ip) { String[] imageNames = getOpenImageNames(); if (imageNames[0] == "None") { IJ.error("need at least 2 binary open images"); return; } double previousMinOverlap = Prefs.get("BVTB.BinaryFeatureExtractor.minOverlap", 0); boolean previousCombine = Prefs.get("BVTB.BinaryFeatureExtractor.combine", false); GenericDialog gd = new GenericDialog("Binary Feature Extractor"); gd.addChoice("Objects image", imageNames, imageNames[0]); gd.addChoice("Selector image", imageNames, imageNames[1]); gd.addNumericField("Object_overlap in % (0=off)", previousMinOverlap, 0, 9, ""); gd.addCheckbox("Combine objects and selectors", previousCombine); gd.addCheckbox("Count output", true); gd.addCheckbox("Analysis tables", false); gd.showDialog(); if (gd.wasCanceled()) { return; } String objectsImgTitle = gd.getNextChoice(); String selectorsImgTitle = gd.getNextChoice(); double minOverlap = gd.getNextNumber(); boolean combineImages = gd.getNextBoolean(); boolean showCountOutput = gd.getNextBoolean(); boolean showAnalysis = gd.getNextBoolean(); if (gd.invalidNumber() || minOverlap < 0 || minOverlap > 100) { IJ.error("invalid number"); return; } Prefs.set("BVTB.BinaryFeatureExtractor.minOverlap", minOverlap); Prefs.set("BVTB.BinaryFeatureExtractor.combine", combineImages); if (objectsImgTitle.equals(selectorsImgTitle)) { IJ.error("images need to be different"); return; } ImagePlus objectsImp = WindowManager.getImage(objectsImgTitle); ImageProcessor objectsIP = objectsImp.getProcessor(); ImagePlus selectorsImp = WindowManager.getImage(selectorsImgTitle); ImageProcessor selectorsIP = selectorsImp.getProcessor(); if (!objectsIP.isBinary() || !selectorsIP.isBinary()) { IJ.error("works with 8-bit binary images only"); return; } if ((objectsImp.getWidth() != selectorsImp.getWidth()) || objectsImp.getHeight() != selectorsImp.getHeight()) { IJ.error("images need to be of the same size"); return; } // close any existing RoiManager before instantiating a new one for this analysis RoiManager oldRM = RoiManager.getInstance2(); if (oldRM != null) { oldRM.close(); } RoiManager objectsRM = new RoiManager(true); ResultsTable objectsRT = new ResultsTable(); ParticleAnalyzer analyzeObjects = new ParticleAnalyzer(analyzerOptions, measurementFlags, objectsRT, 0.0, 999999999.9); analyzeObjects.setRoiManager(objectsRM); analyzeObjects.analyze(objectsImp); objectsRM.runCommand("Show None"); int objectNumber = objectsRT.getCounter(); Roi[] objectRoi = objectsRM.getRoisAsArray(); ResultsTable measureSelectorsRT = new ResultsTable(); Analyzer overlapAnalyzer = new Analyzer(selectorsImp, measurementFlags, measureSelectorsRT); ImagePlus outputImp = IJ.createImage("output", "8-bit black", objectsImp.getWidth(), objectsImp.getHeight(), 1); ImageProcessor outputIP = outputImp.getProcessor(); double[] measuredOverlap = new double[objectNumber]; outputIP.setValue(255.0); for (int o = 0; o < objectNumber; o++) { selectorsImp.killRoi(); selectorsImp.setRoi(objectRoi[o]); overlapAnalyzer.measure(); measuredOverlap[o] = measureSelectorsRT.getValue("%Area", o); if (minOverlap != 0.0 && measuredOverlap[o] >= minOverlap) { outputIP.fill(objectRoi[o]); finalCount++; } else if (minOverlap == 0.0 && measuredOverlap[o] > 0.0) { outputIP.fill(objectRoi[o]); finalCount++; } } // measureSelectorsRT.show("Objects"); selectorsImp.killRoi(); RoiManager selectorRM = new RoiManager(true); ResultsTable selectorRT = new ResultsTable(); ParticleAnalyzer.setRoiManager(selectorRM); ParticleAnalyzer analyzeSelectors = new ParticleAnalyzer(analyzerOptions, measurementFlags, selectorRT, 0.0, 999999999.9); analyzeSelectors.analyze(selectorsImp); selectorRM.runCommand("Show None"); int selectorNumber = selectorRT.getCounter(); if (combineImages) { outputImp.updateAndDraw(); Roi[] selectorRoi = selectorRM.getRoisAsArray(); ResultsTable measureObjectsRT = new ResultsTable(); Analyzer selectorAnalyzer = new Analyzer(outputImp, measurementFlags, measureObjectsRT); double[] selectorOverlap = new double[selectorNumber]; outputIP.setValue(255.0); for (int s = 0; s < selectorNumber; s++) { outputImp.killRoi(); outputImp.setRoi(selectorRoi[s]); selectorAnalyzer.measure(); selectorOverlap[s] = measureObjectsRT.getValue("%Area", s); if (selectorOverlap[s] > 0.0d) { outputIP.fill(selectorRoi[s]); } } selectorRoi = null; selectorAnalyzer = null; measureObjectsRT = null; } // selectorRT.show("Selectors"); outputImp.killRoi(); String outputImageTitle = WindowManager.getUniqueName("Extracted_" + objectsImgTitle); outputImp.setTitle(outputImageTitle); outputImp.show(); outputImp.changes = true; if (showCountOutput) { String[] openTextWindows = WindowManager.getNonImageTitles(); boolean makeNewTable = true; for (int w = 0; w < openTextWindows.length; w++) { if (openTextWindows[w].equals("BFE_Results")) { makeNewTable = false; } } TextWindow existingCountTable = ResultsTable.getResultsWindow(); if (makeNewTable) { countTable = new ResultsTable(); countTable.setPrecision(0); countTable.setValue("Image", 0, outputImageTitle); countTable.setValue("Objects", 0, objectNumber); countTable.setValue("Selectors", 0, selectorNumber); countTable.setValue("Extracted", 0, finalCount); countTable.show("BFE_Results"); } else { IJ.renameResults("BFE_Results", "Results"); countTable = ResultsTable.getResultsTable(); countTable.setPrecision(0); countTable.incrementCounter(); countTable.addValue("Image", outputImageTitle); countTable.addValue("Objects", objectNumber); countTable.addValue("Selectors", selectorNumber); countTable.addValue("Extracted", finalCount); IJ.renameResults("Results", "BFE_Results"); countTable.show("BFE_Results"); } } if (showAnalysis) { ResultsTable extractedRT = new ResultsTable(); ParticleAnalyzer analyzeExtracted = new ParticleAnalyzer( ParticleAnalyzer.CLEAR_WORKSHEET | ParticleAnalyzer.RECORD_STARTS, measurementFlags, extractedRT, 0.0, 999999999.9); analyzeExtracted.analyze(outputImp); objectsRT.show("Objects"); selectorRT.show("Selectors"); extractedRT.show("Extracted"); } else { objectsRT = null; selectorRT = null; } objectsRM = null; measureSelectorsRT = null; analyzeObjects = null; overlapAnalyzer = null; objectRoi = null; selectorRM = null; objectsImp.killRoi(); objectsImp.changes = false; selectorsImp.changes = false; }
void Otsu(ImagePlus imp, int radius, double par1, double par2, boolean doIwhite) { // Otsu's threshold algorithm // C++ code by Jordan Bevik <*****@*****.**> // ported to ImageJ plugin by G.Landini. Same algorithm as in Auto_Threshold, this time on local // circular regions int[] data; int w = imp.getWidth(); int h = imp.getHeight(); int position; int radiusx2 = radius * 2; ImageProcessor ip = imp.getProcessor(); byte[] pixels = (byte[]) ip.getPixels(); byte[] pixelsOut = new byte [pixels.length]; // need this to avoid changing the image data (and further histograms) byte object; byte backg; if (doIwhite) { object = (byte) 0xff; backg = (byte) 0; } else { object = (byte) 0; backg = (byte) 0xff; } int k, kStar; // k = the current threshold; kStar = optimal threshold int N1, N; // N1 = # points with intensity <=k; N = total number of points double BCV, BCVmax; // The current Between Class Variance and maximum BCV double num, denom; // temporary bookeeping int Sk; // The total intensity for all histogram points <=k int S, L = 256; // The total intensity of the image. Need to hange here if modifying for >8 bits // images int roiy; Roi roi = new OvalRoi(0, 0, radiusx2, radiusx2); // ip.setRoi(roi); for (int y = 0; y < h; y++) { IJ.showProgress( (double) (y) / (h - 1)); // this method is slow, so let's show the progress bar roiy = y - radius; for (int x = 0; x < w; x++) { roi.setLocation(x - radius, roiy); ip.setRoi(roi); // ip.setRoi(new OvalRoi(x-radius, roiy, radiusx2, radiusx2)); position = x + y * w; data = ip.getHistogram(); // Initialize values: S = N = 0; for (k = 0; k < L; k++) { S += k * data[k]; // Total histogram intensity N += data[k]; // Total number of data points } Sk = 0; N1 = data[0]; // The entry for zero intensity BCV = 0; BCVmax = 0; kStar = 0; // Look at each possible threshold value, // calculate the between-class variance, and decide if it's a max for (k = 1; k < L - 1; k++) { // No need to check endpoints k = 0 or k = L-1 Sk += k * data[k]; N1 += data[k]; // The float casting here is to avoid compiler warning about loss of precision and // will prevent overflow in the case of large saturated images denom = (double) (N1) * (N - N1); // Maximum value of denom is (N^2)/4 = approx. 3E10 if (denom != 0) { // Float here is to avoid loss of precision when dividing num = ((double) N1 / N) * S - Sk; // Maximum value of num = 255*N = approx 8E7 BCV = (num * num) / denom; } else BCV = 0; if (BCV >= BCVmax) { // Assign the best threshold found so far BCVmax = BCV; kStar = k; } } // kStar += 1; // Use QTI convention that intensity -> 1 if intensity >= k // (the algorithm was developed for I-> 1 if I <= k.) // return kStar; pixelsOut[position] = ((int) (pixels[position] & 0xff) > kStar) ? object : backg; } } for (position = 0; position < w * h; position++) pixels[position] = pixelsOut[position]; // update with thresholded pixels }
public int setup(String arg, ImagePlus imp) { // IJ.register(Average_Oversampled.class); if (IJ.versionLessThan("1.32c")) return DONE; if (this.pre) { // before finding means imp.unlock(); this.imp = imp; this.nslices = imp.getNSlices(); this.width = imp.getWidth(); this.height = imp.getHeight(); this.slicecols = new float[nslices][width]; this.pre = false; return (DOES_ALL + DOES_STACKS + FINAL_PROCESSING); } else { // find SD after finding means of columns float sum; // sum of pixel values column float avg; // average pixel value of a column double devsum; // sum of deviations double devavg; // standard deviation double[] columns = new double[width]; // x-axis of plot double[] sdevs = new double[width]; // y-axis of plot for (int i = 0; i < width; i += 1) { sum = 0; // reset with each column avg = 0; // reset with each column devsum = 0; // reset with each column devavg = 0; // reset with each column columns[i] = i; // building x-axis for (int s = 0; s < nslices; s += 1) { // sum of column means sum = sum + slicecols[s][i]; } avg = sum / nslices; // mean of one column across all slices for (int s = 0; s < nslices; s += 1) { // standard deviation devsum = devsum + Math.pow((slicecols[s][i] - avg), 2); // square diff } devavg = Math.sqrt(devsum / nslices); sdevs[i] = devavg; // building y-axis } Plot plot = new Plot("Average SD by Column", "Columns", "Standard Deviation", columns, sdevs); plot.show(); // calculate CTN double ctn; double sdevssum = 0; for (double sd : sdevs) { sdevssum = sdevssum + sd; } ctn = sdevssum / width; // display CTN on results table ResultsTable rt = ResultsTable.getResultsTable(); // rt.incrementCounter(); rt.addValue("Column Temporal Noise", ctn); rt.show("Results"); this.pre = false; return DONE; } }