@Override public void execute() { VariantContextWriter vcw = new VariantContextWriterBuilder() .setOutputFile(out) .clearIndexCreator() .setReferenceDictionary(VCF.getFileHeader().getSequenceDictionary()) .build(); VCFHeader vh = VCF.getFileHeader(); vh.addMetaDataLine( new VCFInfoHeaderLine( "region", 1, VCFHeaderLineType.String, "region type in which the variant occurs")); vcw.writeHeader(VCF.getFileHeader()); IntervalTreeMap<String> itm = loadRegions(); int num = 0; for (VariantContext vc : VCF) { if (!vc.isFiltered() && vc.getGenotype(CHILD).isCalled() && vc.getGenotype(MOTHER).isCalled() && vc.getGenotype(FATHER).isCalled() && vc.getGenotype(CHILD).getType().equals(GenotypeType.HET) && vc.getGenotype(MOTHER).getType().equals(GenotypeType.HOM_REF) && vc.getGenotype(FATHER).getType().equals(GenotypeType.HOM_REF) && (!vc.getGenotype(CHILD).hasAnyAttribute("GQ") || (vc.getGenotype(CHILD).getGQ() > GQ_THRESHOLD && vc.getGenotype(MOTHER).getGQ() > GQ_THRESHOLD && vc.getGenotype(FATHER).getGQ() > GQ_THRESHOLD)) && (!vc.getGenotype(CHILD).hasAnyAttribute("DP") || (vc.getGenotype(CHILD).getDP() > DP_THRESHOLD && vc.getGenotype(MOTHER).getDP() > DP_THRESHOLD && vc.getGenotype(FATHER).getDP() > DP_THRESHOLD))) { vcw.add(vc); num++; } } vcw.close(); log.info("num: {}", num); }
@Override protected Object doWork() { IOUtil.assertFileIsReadable(INPUT); IOUtil.assertFileIsReadable(REFERENCE_SEQUENCE); IOUtil.assertFileIsReadable(CHAIN); IOUtil.assertFileIsWritable(OUTPUT); IOUtil.assertFileIsWritable(REJECT); //////////////////////////////////////////////////////////////////////// // Setup the inputs //////////////////////////////////////////////////////////////////////// final LiftOver liftOver = new LiftOver(CHAIN); final VCFFileReader in = new VCFFileReader(INPUT, false); logger.info("Loading up the target reference genome."); final ReferenceSequenceFileWalker walker = new ReferenceSequenceFileWalker(REFERENCE_SEQUENCE); final Map<String, byte[]> refSeqs = new HashMap<>(); for (final SAMSequenceRecord rec : walker.getSequenceDictionary().getSequences()) { refSeqs.put(rec.getSequenceName(), walker.get(rec.getSequenceIndex()).getBases()); } CloserUtil.close(walker); //////////////////////////////////////////////////////////////////////// // Setup the outputs //////////////////////////////////////////////////////////////////////// final VCFHeader inHeader = in.getFileHeader(); final VCFHeader outHeader = new VCFHeader(inHeader); outHeader.setSequenceDictionary(walker.getSequenceDictionary()); final VariantContextWriter out = new VariantContextWriterBuilder() .setOption(Options.INDEX_ON_THE_FLY) .setOutputFile(OUTPUT) .setReferenceDictionary(walker.getSequenceDictionary()) .build(); out.writeHeader(outHeader); final VariantContextWriter rejects = new VariantContextWriterBuilder() .setOutputFile(REJECT) .unsetOption(Options.INDEX_ON_THE_FLY) .build(); final VCFHeader rejectHeader = new VCFHeader(in.getFileHeader()); for (final VCFFilterHeaderLine line : FILTERS) rejectHeader.addMetaDataLine(line); rejects.writeHeader(rejectHeader); //////////////////////////////////////////////////////////////////////// // Read the input VCF, lift the records over and write to the sorting // collection. //////////////////////////////////////////////////////////////////////// long failedLiftover = 0, failedAlleleCheck = 0, total = 0; logger.info("Lifting variants over and sorting."); final SortingCollection<VariantContext> sorter = SortingCollection.newInstance( VariantContext.class, new VCFRecordCodec(outHeader), outHeader.getVCFRecordComparator(), MAX_RECORDS_IN_RAM, TMP_DIR); ProgressLogger progress = new ProgressLogger(logger, 1000000, "read"); for (final VariantContext ctx : in) { ++total; final Interval source = new Interval( ctx.getContig(), ctx.getStart(), ctx.getEnd(), false, ctx.getContig() + ":" + ctx.getStart() + "-" + ctx.getEnd()); final Interval target = liftOver.liftOver(source, 1.0); if (target == null) { rejects.add(new VariantContextBuilder(ctx).filter(FILTER_CANNOT_LIFTOVER).make()); failedLiftover++; } else { // Fix the alleles if we went from positive to negative strand final List<Allele> alleles = new ArrayList<>(); for (final Allele oldAllele : ctx.getAlleles()) { if (target.isPositiveStrand() || oldAllele.isSymbolic()) { alleles.add(oldAllele); } else { alleles.add( Allele.create( SequenceUtil.reverseComplement(oldAllele.getBaseString()), oldAllele.isReference())); } } // Build the new variant context final VariantContextBuilder builder = new VariantContextBuilder( ctx.getSource(), target.getContig(), target.getStart(), target.getEnd(), alleles); builder.id(ctx.getID()); builder.attributes(ctx.getAttributes()); builder.genotypes(ctx.getGenotypes()); builder.filters(ctx.getFilters()); builder.log10PError(ctx.getLog10PError()); // Check that the reference allele still agrees with the reference sequence boolean mismatchesReference = false; for (final Allele allele : builder.getAlleles()) { if (allele.isReference()) { final byte[] ref = refSeqs.get(target.getContig()); final String refString = StringUtil.bytesToString(ref, target.getStart() - 1, target.length()); if (!refString.equalsIgnoreCase(allele.getBaseString())) { mismatchesReference = true; } break; } } if (mismatchesReference) { rejects.add(new VariantContextBuilder(ctx).filter(FILTER_MISMATCHING_REF_ALLELE).make()); failedAlleleCheck++; } else { sorter.add(builder.make()); } } progress.record(ctx.getContig(), ctx.getStart()); } final NumberFormat pfmt = new DecimalFormat("0.0000%"); final String pct = pfmt.format((failedLiftover + failedAlleleCheck) / (double) total); logger.info("Processed ", total, " variants."); logger.info(Long.toString(failedLiftover), " variants failed to liftover."); logger.info( Long.toString(failedAlleleCheck), " variants lifted over but had mismatching reference alleles after lift over."); logger.info(pct, " of variants were not successfully lifted over and written to the output."); rejects.close(); in.close(); //////////////////////////////////////////////////////////////////////// // Write the sorted outputs to the final output file //////////////////////////////////////////////////////////////////////// sorter.doneAdding(); progress = new ProgressLogger(logger, 1000000, "written"); logger.info("Writing out sorted records to final VCF."); for (final VariantContext ctx : sorter) { out.add(ctx); progress.record(ctx.getContig(), ctx.getStart()); } out.close(); sorter.cleanup(); return null; }
@Override public void runCommand() { logger.info("MergeVCFColumnsCommand"); /* * Assumptions * (1) Only two vcfs that are sorted with the same contig order * (2) if contigs on it same order, then we will just skip that contig * (3) No overlapping samples allowed * * Output: * A vcf where intersecting sites are merged together and will only return biallelic markers * the info field will be cleared * the only GT FORMAT field will be there */ Collection<File> vcfs = applicationOptions.getVcfs(); String outfile = applicationOptions.getOutFile(); if (vcfs.size() != 2) { throw new IllegalArgumentException("This function requires exactly two vcfs"); } Iterator<File> vcfFileIter = vcfs.iterator(); File vcf1 = vcfFileIter.next(); File vcf2 = vcfFileIter.next(); VCFFileReader reader1 = new VCFFileReader(vcf1, false); VCFFileReader reader2 = new VCFFileReader(vcf2, false); Iterator<VariantContext> iter1 = reader1.iterator(); Iterator<VariantContext> iter2 = reader2.iterator(); VariantContextComparator comparator = new VariantContextComparator(); /* * Merge headers */ VCFHeader header1 = reader1.getFileHeader(); VCFHeader header2 = reader2.getFileHeader(); List<String> samples1 = header1.getGenotypeSamples(); List<String> samples2 = header2.getGenotypeSamples(); List<String> mergedSamples = new ArrayList<>(samples1.size() + samples2.size()); mergedSamples.addAll(samples1); mergedSamples.addAll(samples2); // Validate that there are no duplicates HashSet<String> sampleSet = new HashSet<String>(); for (String id : mergedSamples) { if (sampleSet.contains(id)) { throw new IllegalArgumentException("Duplicate id found: " + id); } else { sampleSet.add(id); } } HashSet<VCFHeaderLine> meta = new HashSet<>(); meta.add(new VCFFormatHeaderLine("GT", 1, VCFHeaderLineType.String, "GT")); meta.addAll(header1.getContigLines()); VCFHeader mergedHeader = new VCFHeader(meta, mergedSamples); /* * Create encoder */ VCFEncoder encoder = new VCFEncoder(mergedHeader, false, false); BufferedWriter writer = null; try { if (outfile.endsWith(".gz")) { BlockCompressedOutputStream outstream = new BlockCompressedOutputStream(new File(outfile)); writer = new BufferedWriter(new OutputStreamWriter(outstream)); } else { writer = Files.newBufferedWriter( Paths.get(outfile), Charset.defaultCharset(), StandardOpenOption.CREATE, StandardOpenOption.TRUNCATE_EXISTING); } /* * Write header */ VCFHeaderWriter.writeHeader(writer, mergedHeader); logger.info("Wrote header"); VariantContext previous1 = null; VariantContext previous2 = null; int count = 0; int countFile1 = 0; int countFile2 = 0; boolean usePrevious1 = false; boolean usePrevious2 = false; while (iter1.hasNext() || iter2.hasNext()) { if ((iter1.hasNext() || usePrevious1) && (iter2.hasNext() || usePrevious2)) { VariantContext variant1 = null; VariantContext variant2 = null; // if(usePrevious1 == true && usePrevious2 == true && // comparator.compare(previous1,previous2) != 0) { // //then skip both // usePrevious1 = false; // usePrevious2 = false; // } if (usePrevious1) { variant1 = previous1; } else { variant1 = iter1.next(); countFile1++; } if (usePrevious2) { variant2 = previous2; } else { variant2 = iter2.next(); countFile2++; } // check that variants are ordered correctly if (previous1 != null && previous1 != variant1 && comparator.compare(previous1, variant1) > 0) { throw new IllegalStateException( previous1.getContig() + ":" + previous1.getStart() + " > " + variant1.getContig() + ":" + variant1.getStart()); } if (previous2 != null && previous2 != variant2 && comparator.compare(previous2, variant2) > 0) { throw new IllegalStateException( previous2.getContig() + ":" + previous2.getStart() + " > " + variant2.getContig() + ":" + variant2.getStart()); } int cmp = comparator.compare(variant1, variant2); if (cmp < 0) { // logger.info("Skipping VCF1: " + variant1.getContig() + ":" + variant1.getStart() + // "\t" + variant1.getReference().toString() + "\t" + variant1.getAlternateAlleles()); if (usePrevious1 == true && usePrevious2 == true) { // variant1 < variant2 // we need to go to next variant in vcf1 usePrevious1 = false; } usePrevious2 = true; } else if (cmp > 0) { if (usePrevious1 == true && usePrevious2 == true) { // variant1 > variant2 // we need to go to next variant in vcf2 usePrevious2 = false; } usePrevious1 = true; // logger.info("Skipping VCF2: " + variant2.getContig() + ":" + variant2.getStart() + // "\t" + variant2.getReference().toString() + "\t" + variant2.getAlternateAlleles()); } else { // they equal position usePrevious1 = false; usePrevious2 = false; if (variant1.isBiallelic() && variant2.isBiallelic() && variant1.getReference().equals(variant2.getReference()) && variant1.getAlternateAllele(0).equals(variant2.getAlternateAllele(0))) { // TODO: Finish merging // both variants are bialleleic and the reference and alternative alleles match count++; if (count % 10000 == 0) { logger.info(count + " mergeable variants found"); } VariantContext merged = VariantContextMerger.merge(variant1, variant2); writer.write(encoder.encode(merged)); writer.write("\n"); } else { // skip if they do not equal // logger.info("Skipping: " + variant1.getContig() + ":" + variant1.getStart() + // "\t" + variant1.getReference().toString() + "\t" + // variant1.getAlternateAlleles()); // logger.info("Skipping: " + variant2.getContig() + ":" + variant2.getStart() + // "\t" + variant2.getReference().toString() + "\t" + // variant2.getAlternateAlleles()); } } previous1 = variant1; previous2 = variant2; } else if (iter1.hasNext()) { // just skip remaining variants VariantContext current = iter1.next(); countFile1++; if (previous1 != null && current != null && comparator.compare(previous1, current) > 0) { throw new IllegalStateException( previous1.getContig() + ":" + previous1.getStart() + " > " + current.getContig() + ":" + current.getStart()); } previous1 = current; // logger.info("Skipping: " + previous1.getContig() + ":" + previous1.getStart() + "\t" + // previous1.getReference().toString() + "\t" + previous1.getAlternateAlleles()); } else if (iter2.hasNext()) { // just skip remaining variants // fixed bug/ was iter1 changed to iter2 VariantContext current = iter2.next(); countFile2++; if (previous2 != null && current != null && comparator.compare(previous2, current) > 0) { throw new IllegalStateException( previous2.getContig() + ":" + previous2.getStart() + " > " + current.getContig() + ":" + current.getStart()); } previous2 = current; // logger.info("Skipping: " + previous2.getContig() + ":" + previous2.getStart() + "\t" + // previous2.getReference().toString() + "\t" + previous2.getAlternateAlleles()); } else { throw new IllegalStateException("Error should not of reached this point"); } } reader1.close(); reader2.close(); logger.info(count + " merged variants"); logger.info(countFile1 + " variants in " + vcf1.getAbsolutePath()); logger.info(countFile2 + " variants in " + vcf2.getAbsolutePath()); } catch (Exception e) { e.printStackTrace(); } finally { if (writer != null) { try { logger.info("Flushing writer"); writer.close(); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } } logger.info("finished merging vcfs"); }