private void testSetIt() {
    neurNet.set(dataCrosValid, Parameters.dataModifier);
    double err = neurNet.calcANN(getBestVector());
    try {
      PrintWriter pw =
          new PrintWriter(new FileWriter(new File(Parameters.CrossValidationErrorFile), true));
      pw.println(err);
      pw.close();
    } catch (Exception e) {
      e.printStackTrace();
    }

    neurNet.set(dataStart, Parameters.dataModifier);
  }
  @Override
  public void set(int numOfWeights, INeuralNetwork neurNet) {

    this.dim = numOfWeights;
    this.neurNet = neurNet;

    this.popNum = Parameters.NumOfUnits;
    this.maxGenNoChamdge = Parameters.MaxNumOfGenWithoutChaindge;
    this.strategy = Parameters.strategy;
    this.F = Parameters.F;
    this.Cr = Parameters.Cr;
    this.initMax = Parameters.initMax;
    this.initMin = Parameters.initMin;

    this.rand = new Random();

    if (Parameters.enableCrossVal) {
      dataStart = neurNet.getData();
      dataCrosValid = Parameters.testgSet.getData(Parameters.testDataPath);
      Parameters.dataModifier.modyfyData(dataCrosValid);
      File f = new File(Parameters.CrossValidationErrorFile);
      f.delete();
    }
  }
 private void evalOne(Unit unit) {
   unit.fitnes = neurNet.calcANN(unit.vector);
 }