/** * 构造下列形函数中的一个: N1 = L1 = r N2 = L2 = s N3 = L3 = t * * @param funID = 1,2,3 */ public void Create(int funID, double coef) { funIndex = funID - 1; if (funID < 1 || 3 < funID) { throw new FutureyeException("ERROR: funID should be 1,2 or 3."); } this.varNames = new String[] {"r", "s", "t"}; innerVarNames = new ObjList<String>("x", "y"); // Compose function: r = r(x,y), s = s(x,y), t = t(x,y) Map<String, MathFunc> fInners = new HashMap<String, MathFunc>(); final String varName = varNames[funIndex]; fInners.put( varName, new AbstractMathFunc(innerVarNames.toList()) { public MathFunc diff(String var) { if (area < 0.0) { throw new FutureyeException("Check nodes order: area < 0.0"); } else { if (varName.equals("r")) { // r对应三角形高h的负倒数 if (var.equals("x")) return new FC(b[0] / (2 * area)); if (var.equals("y")) return new FC(c[0] / (2 * area)); } else if (varName.equals("s")) { // s对应三角形高h的负倒数 if (var.equals("x")) return new FC(b[1] / (2 * area)); if (var.equals("y")) return new FC(c[1] / (2 * area)); } else if (varName.equals("t")) { // t对应三角形高h的负倒数 if (var.equals("x")) return new FC(b[2] / (2 * area)); if (var.equals("y")) return new FC(c[2] / (2 * area)); } } return null; } @Override public double apply(double... args) { throw new UnsupportedOperationException(); } }); // 使用复合函数构造形函数 funOuter = new SF123(); this.coef = coef; funCompose = FC.c(this.coef).M(funOuter.compose(fInners)); funCompose.setActiveVarNames(funOuter.getVarNames()); }
/** * 构造下列形函数中的一个: Ni = (1+r*ri)*(1+s*si)*(1+t*ti)/8 where (ri,si,ti),i=1,...,8 are vertices * coordinate of the hexahedron * * @param funID = 1,...,8 */ public void Create(int funID, double coef) { funIndex = funID - 1; if (funID < 1 || funID > 8) { System.out.println("ERROR: funID should be 1,...,8."); return; } varNames.add("r"); varNames.add("s"); varNames.add("t"); innerVarNames = new ObjList<String>("x", "y", "z"); // 复合函数 Map<String, MathFunc> fInners = new HashMap<String, MathFunc>(4); for (final String varName : varNames) { fInners.put( varName, new AbstractMathFunc(innerVarNames.toList()) { // r_x,r_y,r_z, s_x,s_y,s_z, t_x,t_y,t_z public MathFunc diff(String var) { /** * f(x,y,z) = g(r,s,t) f_x = g_r*r_x + g_s*s_x + g_t*t_x ---(1) f_y = g_r*r_y + * g_s*s_y + g_t*t_y ---(2) f_z = g_r*r_z + g_s*s_z + g_t*t_z ---(3) * * <p>for (1) let f=x,f=y,f=z we get 3 equations, solve them: (x_r x_s x_t) (r_x) (1) * (y_r y_s y_z) * (s_x) = (0) (z_r z_s z_t) (t_x) (0) * * <p>similarly, for (2): (x_r x_s x_t) (r_y) (0) (y_r y_s y_z) * (s_y) = (1) (z_r z_s * z_t) (t_y) (0) * * <p>for (3): (x_r x_s x_t) (r_z) (0) (y_r y_s y_z) * (s_z) = (0) (z_r z_s z_t) (t_z) * (1) * * <p>(x_r x_s x_t) Let J = (y_r y_s y_z) (z_r z_s z_t) * * <p>from the above 9 equations, we have: (r_x r_y r_z) (s_x s_y s_z) = inv(J) (t_x * t_y t_z) */ return new InvJ(varName, var); } @Override public double apply(Variable v) { // TODO Auto-generated method stub return 0; } }); } // funOuter = new FAxpb("r",vt[funIndex][0]/2.0,0.5).M( // new FAxpb("s",vt[funIndex][1]/2.0,0.5)).M( // new FAxpb("t",vt[funIndex][2]/2.0,0.5)); // 速度提高1倍 funOuter = new FOuter(varNames, funIndex); // 使用复合函数构造形函数 this.coef = coef; funCompose = FC.c(this.coef).M(funOuter.compose(fInners)); }