/**
   * @param tree
   * @param node
   * @return and array of the total amount of time spent in each of the discrete states along the
   *     branch above the given node.
   */
  private double[] getProcessValues(final Tree tree, final NodeRef node) {

    double[] processValues = null;
    double branchTime = tree.getBranchLength(node);

    if (mode == Mode.MARKOV_JUMP_PROCESS) {
      processValues = (double[]) trait.getTrait(tree, node);
    } else if (mode == Mode.PARSIMONY) {
      // an approximation to dwell times using parsimony, assuming
      // the state changes midpoint on the tree. Does a weighted
      // average of the equally parsimonious state reconstructions
      // at the top and bottom of each branch.

      if (treeChanged) {
        fitchParsimony.initialize(tree);
        // Debugging test to count work
        //                treeInitializeCounter += 1;
        //                if (treeInitializeCounter % 10 == 0) {
        //                    System.err.println("Cnt: "+treeInitializeCounter);
        //                }
        treeChanged = false;
      }
      int[] states = fitchParsimony.getStates(tree, node);
      int[] parentStates = fitchParsimony.getStates(tree, tree.getParent(node));

      processValues = new double[fitchParsimony.getPatterns().getStateCount()];

      for (int state : states) {
        processValues[state] += branchTime / 2;
      }
      for (int state : parentStates) {
        processValues[state] += branchTime / 2;
      }

      for (int i = 0; i < processValues.length; i++) {
        // normalize by the number of equally parsimonious states at each end of the branch
        // processValues should add up to the total branch length
        processValues[i] /= (states.length + parentStates.length) / 2;
      }
    } else if (mode == Mode.NODE_STATES) {
      processValues = new double[dataType.getStateCount()];
      //            if (indicatorParameter != null) {
      //                // this array should be size #states NOT #rates
      //                processValues = new double[indicatorParameter.getDimension()];
      //            } else {
      //                // this array should be size #states NOT #rates
      //                processValues = new double[rateParameter.getDimension()];
      //            }

      // if the states are being sampled - then there is only one possible state at each
      // end of the branch.
      int state = ((int[]) trait.getTrait(tree, node))[traitIndex];
      processValues[state] += branchTime / 2;
      int parentState = ((int[]) trait.getTrait(tree, tree.getParent(node)))[traitIndex];
      processValues[parentState] += branchTime / 2;
    }

    return processValues;
  }
 @Override
 public List<Integer> getAncestors(int i, boolean b) {
   List<Integer> ancestors = new ArrayList<Integer>();
   if (b) ancestors.add(i);
   for (NodeRef n = tree.getParent(tree.getNode(i)); n != null; n = tree.getParent(n))
     ancestors.add(n.getNumber());
   return ancestors;
 }
 @Override
 public int getSibling(int i) {
   NodeRef n = tree.getNode(i);
   if (tree.isRoot(n)) return RootedTree.NULL;
   NodeRef p = tree.getParent(n);
   int c1 = tree.getChild(p, 0).getNumber();
   int c2 = tree.getChild(p, 1).getNumber();
   return n.getNumber() == c2 ? c1 : c2;
 }
  public void getTransitionProbabilities(
      Tree tree, NodeRef node, int rateCategory, double[] matrix) {

    NodeRef parent = tree.getParent(node);

    final double branchRate = branchModel.getBranchRate(tree, node);

    // Get the operational time of the branch
    final double startTime = tree.getNodeHeight(parent);
    final double endTime = tree.getNodeHeight(node);
    final double branchTime = branchRate * (startTime - endTime);

    if (branchTime < 0.0) {
      throw new RuntimeException("Negative branch length: " + branchTime);
    }

    double distance = siteModel.getRateForCategory(rateCategory) * branchTime;

    int matrixCount = 0;
    boolean oneMatrix = (getEpochWeights(startTime, endTime, weight) == 1);
    for (int m = 0; m < numberModels; m++) {
      if (weight[m] > 0) {
        SubstitutionModel model = modelList.get(m);
        if (matrixCount == 0) {
          if (oneMatrix) {
            model.getTransitionProbabilities(distance, matrix);
            break;
          } else model.getTransitionProbabilities(distance * weight[m], resultMatrix);
          matrixCount++;
        } else {
          model.getTransitionProbabilities(distance * weight[m], stepMatrix);
          // Sum over unobserved state
          int index = 0;
          for (int i = 0; i < stateCount; i++) {
            for (int j = 0; j < stateCount; j++) {
              productMatrix[index] = 0;
              for (int k = 0; k < stateCount; k++) {
                productMatrix[index] +=
                    resultMatrix[i * stateCount + k] * stepMatrix[k * stateCount + j];
              }
              index++;
            }
          }
          // Swap pointers
          double[] tmpMatrix = resultMatrix;
          resultMatrix = productMatrix;
          productMatrix = tmpMatrix;
        }
      }
    }
    if (!oneMatrix) System.arraycopy(resultMatrix, 0, matrix, 0, stateCount * stateCount);
  }
 @Override
 public int getParent(int i) {
   NodeRef n = tree.getParent(tree.getNode(i));
   return n != null ? n.getNumber() : RootedTree.NULL;
 }
예제 #6
0
  /**
   * Traverse the tree calculating partial likelihoods.
   *
   * @param tree tree
   * @param node node
   * @param operatorNumber operatorNumber
   * @param flip flip
   * @return boolean
   */
  private boolean traverse(Tree tree, NodeRef node, int[] operatorNumber, boolean flip) {

    boolean update = false;

    int nodeNum = node.getNumber();

    NodeRef parent = tree.getParent(node);

    if (operatorNumber != null) {
      operatorNumber[0] = -1;
    }

    // First update the transition probability matrix(ices) for this branch
    if (parent != null && updateNode[nodeNum]) {

      final double branchRate = branchRateModel.getBranchRate(tree, node);

      final double parentHeight = tree.getNodeHeight(parent);
      final double nodeHeight = tree.getNodeHeight(node);

      // Get the operational time of the branch
      final double branchLength = branchRate * (parentHeight - nodeHeight);
      if (branchLength < 0.0) {
        throw new RuntimeException("Negative branch length: " + branchLength);
      }

      if (flip) {
        substitutionModelDelegate.flipMatrixBuffer(nodeNum);
      }
      branchUpdateIndices[branchUpdateCount] = nodeNum;
      branchLengths[branchUpdateCount] = branchLength;
      branchUpdateCount++;

      update = true;
    }

    // If the node is internal, update the partial likelihoods.
    if (!tree.isExternal(node)) {

      // Traverse down the two child nodes
      NodeRef child1 = tree.getChild(node, 0);
      final int[] op1 = {-1};
      final boolean update1 = traverse(tree, child1, op1, flip);

      NodeRef child2 = tree.getChild(node, 1);
      final int[] op2 = {-1};
      final boolean update2 = traverse(tree, child2, op2, flip);

      // If either child node was updated then update this node too
      if (update1 || update2) {

        int x = operationCount[operationListCount] * Beagle.OPERATION_TUPLE_SIZE;

        if (flip) {
          // first flip the partialBufferHelper
          partialBufferHelper.flipOffset(nodeNum);
        }

        final int[] operations = this.operations[operationListCount];

        operations[x] = partialBufferHelper.getOffsetIndex(nodeNum);

        if (useScaleFactors) {
          // get the index of this scaling buffer
          int n = nodeNum - tipCount;

          if (recomputeScaleFactors) {
            // flip the indicator: can take either n or (internalNodeCount + 1) - n
            scaleBufferHelper.flipOffset(n);

            // store the index
            scaleBufferIndices[n] = scaleBufferHelper.getOffsetIndex(n);

            operations[x + 1] = scaleBufferIndices[n]; // Write new scaleFactor
            operations[x + 2] = Beagle.NONE;

          } else {
            operations[x + 1] = Beagle.NONE;
            operations[x + 2] = scaleBufferIndices[n]; // Read existing scaleFactor
          }

        } else {

          if (useAutoScaling) {
            scaleBufferIndices[nodeNum - tipCount] = partialBufferHelper.getOffsetIndex(nodeNum);
          }
          operations[x + 1] = Beagle.NONE; // Not using scaleFactors
          operations[x + 2] = Beagle.NONE;
        }

        operations[x + 3] = partialBufferHelper.getOffsetIndex(child1.getNumber()); // source node 1
        operations[x + 4] =
            substitutionModelDelegate.getMatrixIndex(child1.getNumber()); // source matrix 1
        operations[x + 5] = partialBufferHelper.getOffsetIndex(child2.getNumber()); // source node 2
        operations[x + 6] =
            substitutionModelDelegate.getMatrixIndex(child2.getNumber()); // source matrix 2

        operationCount[operationListCount]++;

        update = true;

        if (hasRestrictedPartials) {
          // Test if this set of partials should be restricted
          if (updateRestrictedNodePartials) {
            // Recompute map
            computeNodeToRestrictionMap();
            updateRestrictedNodePartials = false;
          }
          if (partialsMap[nodeNum] != null) {}
        }
      }
    }

    return update;
  }
  /**
   * Traverse the tree calculating partial likelihoods.
   *
   * @return whether the partials for this node were recalculated.
   */
  protected boolean traverse(Tree tree, NodeRef node) {

    boolean update = false;
    boolean rootUpdated = false;

    int nodeNum = node.getNumber();

    NodeRef parent = tree.getParent(node);

    // First update the transition probability matrix(ices) for this branch if it is a normal branch
    if (parent != null && updateNode[nodeNum]) {

      final double branchRate = branchRateModel.getBranchRate(tree, node);

      // Get the operational time of the branch
      final double branchTime =
          branchRate * (tree.getNodeHeight(parent) - tree.getNodeHeight(node));

      if (branchTime < 0.0) {
        throw new RuntimeException("Negative branch length: " + branchTime);
      }

      cenancestorlikelihoodCore.setNodeMatrixForUpdate(nodeNum);

      for (int i = 0; i < categoryCount; i++) {

        double branchLength = siteModel.getRateForCategory(i) * branchTime;
        siteModel.getSubstitutionModel().getTransitionProbabilities(branchLength, probabilities);
        cenancestorlikelihoodCore.setNodeMatrix(nodeNum, i, probabilities);
      }

      update = true;
    } else if (parent == null
        && cenancestorHeight != null
        && updateNode[nodeNum]) // The root has to be updated
    {
      // First update the transition probability matrix(ices) for the root-cenancestor fake branch
      rootUpdated = true;
      // Get the operational time of the fake branch from the root to the cenancestor
      double rootHeight = treeModel.getNodeHeight(treeModel.getRoot());
      double branchRate =
          branchRateModel.getBranchRate(
              rootHeight,
              getCenancestorHeight()); // TODO: Could this be easily improved? I would do to adapt
                                       // the tree structure and abstact tree likelihood
      double branchTime =
          branchRate
              * getCenancestorBranch(); // TODO: Could this be easily improved? The same as before

      for (int i = 0; i < categoryCount; i++) {
        double branchLength = siteModel.getRateForCategory(i) * branchTime;
        siteModel.getSubstitutionModel().getTransitionProbabilities(branchLength, probabilities);
        cenancestorlikelihoodCore.setNodeMatrix(nodeNum, i, probabilities);
      }
    }

    // If the node is internal, update the partial likelihoods.
    if (!tree.isExternal(node)) {

      // Traverse down the two child nodes
      NodeRef child1 = tree.getChild(node, 0);
      final boolean update1 = traverse(tree, child1);

      NodeRef child2 = tree.getChild(node, 1);
      final boolean update2 = traverse(tree, child2);

      // If either child node was updated then update this node too
      if (update1 || update2 || rootUpdated) {

        if (update1 || update2) {
          final int childNum1 = child1.getNumber();
          final int childNum2 = child2.getNumber();

          cenancestorlikelihoodCore.setNodePartialsForUpdate(nodeNum);

          if (integrateAcrossCategories) {
            cenancestorlikelihoodCore.calculatePartials(childNum1, childNum2, nodeNum);
          } else {
            cenancestorlikelihoodCore.calculatePartials(
                childNum1, childNum2, nodeNum, siteCategories);
          }

          if (COUNT_TOTAL_OPERATIONS) {
            totalOperationCount++;
          }
        }

        if (parent == null) {
          // No parent this is the root of the tree

          double[] partials;
          int nodeNumCenan = getCenancestorIndex();

          if (cenancestorHeight != null) {
            if (rootUpdated) {
              // Calculate the partials at the cenancestor. The transition matrix of the root was
              // calculated before.
              cenancestorlikelihoodCore.setNodePartialsForUpdate(nodeNumCenan);

              if (integrateAcrossCategories) {
                cenancestorlikelihoodCore.calculatePartials(nodeNum, nodeNumCenan);
              } else {
                cenancestorlikelihoodCore.calculatePartials(nodeNum, nodeNumCenan, siteCategories);
              }
            }

            partials = getCenancestorPartials();
          } else { // Using the cenancestor model without cenancestor date. It assumes that the root
                   // of the tree is the cenancestor. Not tested. It shouldn't be normally used
                   // either.
            partials = getRootPartials();
          }

          // calculate the pattern likelihoods
          double[] frequencies = frequencyModel.getFrequencies();
          cenancestorlikelihoodCore.calculateLogLikelihoods(
              partials, frequencies, patternLogLikelihoods);
        }

        update = true;
      }
    }

    return update;
  }