public Alignment align(SentencePair sentencePair) { // Placeholder code below. // TODO Implement an inference algorithm for Eq.1 in the assignment // handout to predict alignments based on the counts you collected with train(). Alignment alignment = new Alignment(); List<String> sourceSentence = sentencePair.getSourceWords(); List<String> targetSentence = sentencePair.getTargetWords(); int m = sourceSentence.size(); int l = targetSentence.size(); Pair<Integer, Integer> lmPair = new Pair<Integer, Integer>(l, m); for (int i = 0; i < m; i++) { String sourceWord = sourceSentence.get(i); double bestScore = Double.NEGATIVE_INFINITY; int bestAlign = -1; for (int j = 0; j < l; j++) { String targetWord = targetSentence.get(j); Pair<Integer, Integer> jiPair = new Pair<Integer, Integer>(j, i); double transProb = sourceTargetCounts.getCount(sourceWord, targetWord); double alignProb = sourceTargetDistortions.getCount(jiPair, lmPair); double score = Math.log(transProb) + Math.log(alignProb); if (score > bestScore) { bestScore = score; bestAlign = j; } } if (!targetSentence.get(bestAlign).equals(WordAligner.NULL_WORD)) { alignment.addPredictedAlignment(bestAlign, i); } } return alignment; }
public void train(List<SentencePair> trainingPairs) { sourceTargetCounts = new CounterMap<String, String>(); sourceTargetDistortions = new CounterMap<Pair<Integer, Integer>, Pair<Integer, Integer>>(); for (SentencePair pair : trainingPairs) { List<String> sourceSentence = pair.getSourceWords(); List<String> targetSentence = pair.getTargetWords(); targetSentence.add(WordAligner.NULL_WORD); int m = sourceSentence.size(); int l = targetSentence.size(); for (int i = 0; i < m; i++) { String sourceWord = sourceSentence.get(i); for (int j = 0; j < l; j++) { String targetWord = targetSentence.get(j); sourceTargetCounts.setCount(sourceWord, targetWord, 1.0); Pair<Integer, Integer> lmPair = new Pair<Integer, Integer>(l, m); Pair<Integer, Integer> jiPair = new Pair<Integer, Integer>(j, i); sourceTargetDistortions.setCount(jiPair, lmPair, 1.0); } } } // Use Model 1 to train params double delta = Double.POSITIVE_INFINITY; for (int i = 0; i < MAX_ITERS && delta > CONVERGENCE; i++) { CounterMap<String, String> tempSourceTargetCounts = new CounterMap<String, String>(); Counter<String> targetCounts = new Counter<String>(); delta = 0.0; for (SentencePair pair : trainingPairs) { List<String> sourceSentence = pair.getSourceWords(); List<String> targetSentence = pair.getTargetWords(); Counter<String> sourceTotals = new Counter<String>(); for (String sourceWord : sourceSentence) { for (String targetWord : targetSentence) { sourceTotals.incrementCount( sourceWord, sourceTargetCounts.getCount(sourceWord, targetWord)); } } for (String sourceWord : sourceSentence) { for (String targetWord : targetSentence) { double transProb = sourceTargetCounts.getCount(sourceWord, targetWord); double sourceTotal = sourceTotals.getCount(sourceWord); tempSourceTargetCounts.incrementCount(sourceWord, targetWord, transProb / sourceTotal); targetCounts.incrementCount(targetWord, transProb / sourceTotal); } } } // update t(s|t) values for (String sourceWord : tempSourceTargetCounts.keySet()) { for (String targetWord : tempSourceTargetCounts.getCounter(sourceWord).keySet()) { double oldProb = sourceTargetCounts.getCount(sourceWord, targetWord); double newProb = tempSourceTargetCounts.getCount(sourceWord, targetWord) / targetCounts.getCount(targetWord); sourceTargetCounts.setCount(sourceWord, targetWord, newProb); delta += Math.pow(oldProb - newProb, 2.0); } } delta /= sourceTargetCounts.totalSize(); } // Maximizing for ibm model 2 delta = Double.POSITIVE_INFINITY; for (int iter = 0; iter < MAX_ITERS && delta > CONVERGENCE; iter++) { CounterMap<String, String> tempSourceTargetCounts = new CounterMap<String, String>(); CounterMap<Pair<Integer, Integer>, Pair<Integer, Integer>> tempSourceTargetDistortions = new CounterMap<Pair<Integer, Integer>, Pair<Integer, Integer>>(); Counter<String> targetCounts = new Counter<String>(); CounterMap<Pair<Integer, Integer>, Integer> targetDistorts = new CounterMap<Pair<Integer, Integer>, Integer>(); delta = 0.0; for (SentencePair pair : trainingPairs) { List<String> sourceSentence = pair.getSourceWords(); List<String> targetSentence = pair.getTargetWords(); CounterMap<Pair<Integer, Integer>, Integer> distortSourceTotals = new CounterMap<Pair<Integer, Integer>, Integer>(); Pair<Integer, Integer> lmPair = new Pair<Integer, Integer>(targetSentence.size(), sourceSentence.size()); for (int i = 0; i < sourceSentence.size(); i++) { String sourceWord = sourceSentence.get(i); for (int j = 0; j < targetSentence.size(); j++) { String targetWord = targetSentence.get(j); Pair<Integer, Integer> jiPair = new Pair<Integer, Integer>(j, i); double currTransProb = sourceTargetCounts.getCount(sourceWord, targetWord); double currAlignProb = sourceTargetDistortions.getCount(jiPair, lmPair); distortSourceTotals.incrementCount(lmPair, i, currTransProb * currAlignProb); } } for (int i = 0; i < sourceSentence.size(); i++) { String sourceWord = sourceSentence.get(i); double distortTransSourceTotal = distortSourceTotals.getCount(lmPair, i); for (int j = 0; j < targetSentence.size(); j++) { String targetWord = targetSentence.get(j); Pair<Integer, Integer> jiPair = new Pair<Integer, Integer>(j, i); double transProb = sourceTargetCounts.getCount(sourceWord, targetWord); double distortProb = sourceTargetDistortions.getCount(jiPair, lmPair); double update = (transProb * distortProb) / (distortTransSourceTotal); // q(j|ilm)t(f|e)/totals tempSourceTargetCounts.incrementCount(sourceWord, targetWord, update); tempSourceTargetDistortions.incrementCount(jiPair, lmPair, update); targetCounts.incrementCount(targetWord, update); targetDistorts.incrementCount(lmPair, i, update); } } } // update t(s|t) values double delta_trans = 0.0; for (String sourceWord : tempSourceTargetCounts.keySet()) { for (String targetWord : tempSourceTargetCounts.getCounter(sourceWord).keySet()) { double oldProb = sourceTargetCounts.getCount(sourceWord, targetWord); double newProb = tempSourceTargetCounts.getCount(sourceWord, targetWord) / targetCounts.getCount(targetWord); sourceTargetCounts.setCount(sourceWord, targetWord, newProb); delta += Math.pow(oldProb - newProb, 2.0); } } // update q(j|ilm) values double delta_dist = 0.0; for (Pair<Integer, Integer> jiPair : tempSourceTargetDistortions.keySet()) { for (Pair<Integer, Integer> lmPair : tempSourceTargetDistortions.getCounter(jiPair).keySet()) { double oldProb = sourceTargetDistortions.getCount(jiPair, lmPair); double tempAlignProb = tempSourceTargetDistortions.getCount(jiPair, lmPair); double tempTargetDist = targetDistorts.getCount(lmPair, jiPair.getSecond()); double newProb = tempAlignProb / tempTargetDist; sourceTargetDistortions.setCount(jiPair, lmPair, newProb); delta_dist += Math.pow(oldProb - newProb, 2.0); } } delta = (delta_trans / sourceTargetCounts.totalSize() + delta_dist / sourceTargetDistortions.totalSize()) / 2.0; } }