@Override public double value(final Vec mu) { double result = 0.0; for (int i = 0; i < ds.length(); i++) { final double trans = binClassifier.value(ds.data().row(i)); final double sigmoid = MathTools.sigmoid(trans); final double underLog = mu.get(target.label(i)) * sigmoid + (1 - mu.get(target.label(i))) * (1 - sigmoid); result -= Math.log(underLog); } result += c * VecTools.multiply(MxTools.multiply(laplacian, mu), mu); return result; }
public void backward() { Mx cnc = null; if (bias_b != 0) { cnc = leftContract(output); } else { cnc = VecTools.copy(output); } difference = MxTools.multiply(MxTools.transpose(cnc), activations); for (int i = 0; i < difference.dim(); i++) { difference.set(i, difference.get(i) / activations.rows()); } input = MxTools.multiply(cnc, weights); rectifier.grad(activations, activations); for (int i = 0; i < input.dim(); i++) { input.set(i, input.get(i) * activations.get(i)); if (dropoutFraction > 0) { input.set(i, input.get(i) * dropoutMask.get(i)); } } }
public void forward() { if (bias != 0) { activations = leftExtend(input); } else { activations = VecTools.copy(input); } output = MxTools.multiply(activations, MxTools.transpose(weights)); rectifier.value(output, output); if (dropoutFraction > 0) { if (isTrain) { dropoutMask = getDropoutMask(); for (int i = 0; i < output.dim(); i++) { output.set(i, output.get(i) * dropoutMask.get(i)); } } else { for (int i = 0; i < output.dim(); i++) { output.set(i, output.get(i) * (1 - dropoutFraction)); } } } }