final FinderPatternInfo find(Map<DecodeHintType, ?> paramMap) throws NotFoundException { int i; int j; int k; int m; boolean bool; int[] arrayOfInt; int n; if ((paramMap != null) && (paramMap.containsKey(DecodeHintType.TRY_HARDER))) { i = 1; j = this.image.getHeight(); k = this.image.getWidth(); m = j * 3 / 228; if ((m < 3) || (i != 0)) { m = 3; } bool = false; arrayOfInt = new int[5]; n = m - 1; } for (;;) { if ((n >= j) || (bool)) { break label451; } arrayOfInt[0] = 0; arrayOfInt[1] = 0; arrayOfInt[2] = 0; arrayOfInt[3] = 0; arrayOfInt[4] = 0; int i1 = 0; int i2 = 0; label113: if (i2 < k) { if (this.image.get(i2, n)) { if ((i1 & 0x1) == 1) { i1++; } arrayOfInt[i1] = (1 + arrayOfInt[i1]); } for (;;) { i2++; break label113; i = 0; break; if ((i1 & 0x1) == 0) { if (i1 == 4) { if (foundPatternCross(arrayOfInt)) { if (handlePossibleCenter(arrayOfInt, n, i2)) { m = 2; if (this.hasSkipped) { bool = haveMultiplyConfirmedCenters(); } for (;;) { arrayOfInt[0] = 0; arrayOfInt[1] = 0; arrayOfInt[2] = 0; arrayOfInt[3] = 0; arrayOfInt[4] = 0; i1 = 0; break; int i3 = findRowSkip(); if (i3 > arrayOfInt[2]) { n += i3 - arrayOfInt[2] - m; i2 = k - 1; } } } arrayOfInt[0] = arrayOfInt[2]; arrayOfInt[1] = arrayOfInt[3]; arrayOfInt[2] = arrayOfInt[4]; arrayOfInt[3] = 1; arrayOfInt[4] = 0; i1 = 3; } else { arrayOfInt[0] = arrayOfInt[2]; arrayOfInt[1] = arrayOfInt[3]; arrayOfInt[2] = arrayOfInt[4]; arrayOfInt[3] = 1; arrayOfInt[4] = 0; i1 = 3; } } else { i1++; arrayOfInt[i1] = (1 + arrayOfInt[i1]); } } else { arrayOfInt[i1] = (1 + arrayOfInt[i1]); } } } if ((foundPatternCross(arrayOfInt)) && (handlePossibleCenter(arrayOfInt, n, k))) { m = arrayOfInt[0]; if (this.hasSkipped) { bool = haveMultiplyConfirmedCenters(); } } n += m; } label451: FinderPattern[] arrayOfFinderPattern = selectBestPatterns(); ResultPoint.orderBestPatterns(arrayOfFinderPattern); return new FinderPatternInfo(arrayOfFinderPattern); }
public FinderPatternInfo[] findMulti(Map<DecodeHintType, ?> hints) throws NotFoundException { boolean tryHarder = hints != null && hints.containsKey(DecodeHintType.TRY_HARDER); boolean pureBarcode = hints != null && hints.containsKey(DecodeHintType.PURE_BARCODE); BitMatrix image = getImage(); int maxI = image.getHeight(); int maxJ = image.getWidth(); // We are looking for black/white/black/white/black modules in // 1:1:3:1:1 ratio; this tracks the number of such modules seen so far // Let's assume that the maximum version QR Code we support takes up 1/4 the height of the // image, and then account for the center being 3 modules in size. This gives the smallest // number of pixels the center could be, so skip this often. When trying harder, look for all // QR versions regardless of how dense they are. int iSkip = (int) (maxI / (MAX_MODULES * 4.0f) * 3); if (iSkip < MIN_SKIP || tryHarder) { iSkip = MIN_SKIP; } int[] stateCount = new int[5]; for (int i = iSkip - 1; i < maxI; i += iSkip) { // Get a row of black/white values stateCount[0] = 0; stateCount[1] = 0; stateCount[2] = 0; stateCount[3] = 0; stateCount[4] = 0; int currentState = 0; for (int j = 0; j < maxJ; j++) { if (image.get(j, i)) { // Black pixel if ((currentState & 1) == 1) { // Counting white pixels currentState++; } stateCount[currentState]++; } else { // White pixel if ((currentState & 1) == 0) { // Counting black pixels if (currentState == 4) { // A winner? if (foundPatternCross(stateCount) && handlePossibleCenter(stateCount, i, j, pureBarcode)) { // Yes // Clear state to start looking again currentState = 0; stateCount[0] = 0; stateCount[1] = 0; stateCount[2] = 0; stateCount[3] = 0; stateCount[4] = 0; } else { // No, shift counts back by two stateCount[0] = stateCount[2]; stateCount[1] = stateCount[3]; stateCount[2] = stateCount[4]; stateCount[3] = 1; stateCount[4] = 0; currentState = 3; } } else { stateCount[++currentState]++; } } else { // Counting white pixels stateCount[currentState]++; } } } // for j=... if (foundPatternCross(stateCount)) { handlePossibleCenter(stateCount, i, maxJ, pureBarcode); } // end if foundPatternCross } // for i=iSkip-1 ... FinderPattern[][] patternInfo = selectMutipleBestPatterns(); List<FinderPatternInfo> result = new ArrayList<>(); for (FinderPattern[] pattern : patternInfo) { ResultPoint.orderBestPatterns(pattern); result.add(new FinderPatternInfo(pattern)); } if (result.isEmpty()) { return EMPTY_RESULT_ARRAY; } else { return result.toArray(new FinderPatternInfo[result.size()]); } }
/** * @return the 3 best {@link FinderPattern}s from our list of candidates. The "best" are those * that have been detected at least {@link #CENTER_QUORUM} times, and whose module size * differs from the average among those patterns the least * @throws NotFoundException if 3 such finder patterns do not exist */ private FinderPattern[][] selectMutipleBestPatterns() throws NotFoundException { List<FinderPattern> possibleCenters = getPossibleCenters(); int size = possibleCenters.size(); if (size < 3) { // Couldn't find enough finder patterns throw NotFoundException.getNotFoundInstance(); } /* * Begin HE modifications to safely detect multiple codes of equal size */ if (size == 3) { return new FinderPattern[][] { new FinderPattern[] {possibleCenters.get(0), possibleCenters.get(1), possibleCenters.get(2)} }; } // Sort by estimated module size to speed up the upcoming checks Collections.sort(possibleCenters, new ModuleSizeComparator()); /* * Now lets start: build a list of tuples of three finder locations that * - feature similar module sizes * - are placed in a distance so the estimated module count is within the QR specification * - have similar distance between upper left/right and left top/bottom finder patterns * - form a triangle with 90° angle (checked by comparing top right/bottom left distance * with pythagoras) * * Note: we allow each point to be used for more than one code region: this might seem * counterintuitive at first, but the performance penalty is not that big. At this point, * we cannot make a good quality decision whether the three finders actually represent * a QR code, or are just by chance layouted so it looks like there might be a QR code there. * So, if the layout seems right, lets have the decoder try to decode. */ List<FinderPattern[]> results = new ArrayList<>(); // holder for the results for (int i1 = 0; i1 < (size - 2); i1++) { FinderPattern p1 = possibleCenters.get(i1); if (p1 == null) { continue; } for (int i2 = i1 + 1; i2 < (size - 1); i2++) { FinderPattern p2 = possibleCenters.get(i2); if (p2 == null) { continue; } // Compare the expected module sizes; if they are really off, skip float vModSize12 = (p1.getEstimatedModuleSize() - p2.getEstimatedModuleSize()) / Math.min(p1.getEstimatedModuleSize(), p2.getEstimatedModuleSize()); float vModSize12A = Math.abs(p1.getEstimatedModuleSize() - p2.getEstimatedModuleSize()); if (vModSize12A > DIFF_MODSIZE_CUTOFF && vModSize12 >= DIFF_MODSIZE_CUTOFF_PERCENT) { // break, since elements are ordered by the module size deviation there cannot be // any more interesting elements for the given p1. break; } for (int i3 = i2 + 1; i3 < size; i3++) { FinderPattern p3 = possibleCenters.get(i3); if (p3 == null) { continue; } // Compare the expected module sizes; if they are really off, skip float vModSize23 = (p2.getEstimatedModuleSize() - p3.getEstimatedModuleSize()) / Math.min(p2.getEstimatedModuleSize(), p3.getEstimatedModuleSize()); float vModSize23A = Math.abs(p2.getEstimatedModuleSize() - p3.getEstimatedModuleSize()); if (vModSize23A > DIFF_MODSIZE_CUTOFF && vModSize23 >= DIFF_MODSIZE_CUTOFF_PERCENT) { // break, since elements are ordered by the module size deviation there cannot be // any more interesting elements for the given p1. break; } FinderPattern[] test = {p1, p2, p3}; ResultPoint.orderBestPatterns(test); // Calculate the distances: a = topleft-bottomleft, b=topleft-topright, c = diagonal FinderPatternInfo info = new FinderPatternInfo(test); float dA = ResultPoint.distance(info.getTopLeft(), info.getBottomLeft()); float dC = ResultPoint.distance(info.getTopRight(), info.getBottomLeft()); float dB = ResultPoint.distance(info.getTopLeft(), info.getTopRight()); // Check the sizes float estimatedModuleCount = (dA + dB) / (p1.getEstimatedModuleSize() * 2.0f); if (estimatedModuleCount > MAX_MODULE_COUNT_PER_EDGE || estimatedModuleCount < MIN_MODULE_COUNT_PER_EDGE) { continue; } // Calculate the difference of the edge lengths in percent float vABBC = Math.abs((dA - dB) / Math.min(dA, dB)); if (vABBC >= 0.1f) { continue; } // Calculate the diagonal length by assuming a 90° angle at topleft float dCpy = (float) Math.sqrt(dA * dA + dB * dB); // Compare to the real distance in % float vPyC = Math.abs((dC - dCpy) / Math.min(dC, dCpy)); if (vPyC >= 0.1f) { continue; } // All tests passed! results.add(test); } // end iterate p3 } // end iterate p2 } // end iterate p1 if (!results.isEmpty()) { return results.toArray(new FinderPattern[results.size()][]); } // Nothing found! throw NotFoundException.getNotFoundInstance(); }
/** * Detects a Data Matrix Code in an image. * * @return {@link DetectorResult} encapsulating results of detecting a Data Matrix Code * @throws NotFoundException if no Data Matrix Code can be found */ public DetectorResult detect() throws NotFoundException { ResultPoint[] cornerPoints = rectangleDetector.detect(); ResultPoint pointA = cornerPoints[0]; ResultPoint pointB = cornerPoints[1]; ResultPoint pointC = cornerPoints[2]; ResultPoint pointD = cornerPoints[3]; // Point A and D are across the diagonal from one another, // as are B and C. Figure out which are the solid black lines // by counting transitions Vector transitions = new Vector(4); transitions.addElement(transitionsBetween(pointA, pointB)); transitions.addElement(transitionsBetween(pointA, pointC)); transitions.addElement(transitionsBetween(pointB, pointD)); transitions.addElement(transitionsBetween(pointC, pointD)); Collections.insertionSort(transitions, new ResultPointsAndTransitionsComparator()); // Sort by number of transitions. First two will be the two solid sides; last two // will be the two alternating black/white sides ResultPointsAndTransitions lSideOne = (ResultPointsAndTransitions) transitions.elementAt(0); ResultPointsAndTransitions lSideTwo = (ResultPointsAndTransitions) transitions.elementAt(1); // Figure out which point is their intersection by tallying up the number of times we see the // endpoints in the four endpoints. One will show up twice. Hashtable pointCount = new Hashtable(); increment(pointCount, lSideOne.getFrom()); increment(pointCount, lSideOne.getTo()); increment(pointCount, lSideTwo.getFrom()); increment(pointCount, lSideTwo.getTo()); ResultPoint maybeTopLeft = null; ResultPoint bottomLeft = null; ResultPoint maybeBottomRight = null; Enumeration points = pointCount.keys(); while (points.hasMoreElements()) { ResultPoint point = (ResultPoint) points.nextElement(); Integer value = (Integer) pointCount.get(point); if (value.intValue() == 2) { bottomLeft = point; // this is definitely the bottom left, then -- end of two L sides } else { // Otherwise it's either top left or bottom right -- just assign the two arbitrarily now if (maybeTopLeft == null) { maybeTopLeft = point; } else { maybeBottomRight = point; } } } if (maybeTopLeft == null || bottomLeft == null || maybeBottomRight == null) { throw NotFoundException.getNotFoundInstance(); } // Bottom left is correct but top left and bottom right might be switched ResultPoint[] corners = {maybeTopLeft, bottomLeft, maybeBottomRight}; // Use the dot product trick to sort them out ResultPoint.orderBestPatterns(corners); // Now we know which is which: ResultPoint bottomRight = corners[0]; bottomLeft = corners[1]; ResultPoint topLeft = corners[2]; // Which point didn't we find in relation to the "L" sides? that's the top right corner ResultPoint topRight; if (!pointCount.containsKey(pointA)) { topRight = pointA; } else if (!pointCount.containsKey(pointB)) { topRight = pointB; } else if (!pointCount.containsKey(pointC)) { topRight = pointC; } else { topRight = pointD; } // Next determine the dimension by tracing along the top or right side and counting black/white // transitions. Since we start inside a black module, we should see a number of transitions // equal to 1 less than the code dimension. Well, actually 2 less, because we are going to // end on a black module: // The top right point is actually the corner of a module, which is one of the two black modules // adjacent to the white module at the top right. Tracing to that corner from either the top // left // or bottom right should work here. int dimension = Math.min( transitionsBetween(topLeft, topRight).getTransitions(), transitionsBetween(bottomRight, topRight).getTransitions()); if ((dimension & 0x01) == 1) { // it can't be odd, so, round... up? dimension++; } dimension += 2; // correct top right point to match the white module ResultPoint correctedTopRight = correctTopRight(bottomLeft, bottomRight, topLeft, topRight, dimension); if (correctedTopRight == null) { correctedTopRight = topRight; } // We redetermine the dimension using the corrected top right point int dimension2 = Math.max( transitionsBetween(topLeft, correctedTopRight).getTransitions(), transitionsBetween(bottomRight, correctedTopRight).getTransitions()); dimension2++; if ((dimension2 & 0x01) == 1) { dimension2++; } BitMatrix bits = sampleGrid(image, topLeft, bottomLeft, bottomRight, correctedTopRight, dimension2); return new DetectorResult( bits, new ResultPoint[] {topLeft, bottomLeft, bottomRight, correctedTopRight}); }
public FinderPatternInfo[] findMulti(Hashtable hints) throws NotFoundException { boolean tryHarder = hints != null && hints.containsKey(DecodeHintType.TRY_HARDER); BitMatrix image = getImage(); int maxI = image.getHeight(); int maxJ = image.getWidth(); // We are looking for black/white/black/white/black modules in // 1:1:3:1:1 ratio; this tracks the number of such modules seen so far // Let's assume that the maximum version QR Code we support takes up 1/4 the height of the // image, and then account for the center being 3 modules in size. This gives the smallest // number of pixels the center could be, so skip this often. When trying harder, look for all // QR versions regardless of how dense they are. int iSkip = (int) (maxI / (MAX_MODULES * 4.0f) * 3); if (iSkip < MIN_SKIP || tryHarder) { iSkip = MIN_SKIP; } int[] stateCount = new int[5]; for (int i = iSkip - 1; i < maxI; i += iSkip) { // Get a row of black/white values stateCount[0] = 0; stateCount[1] = 0; stateCount[2] = 0; stateCount[3] = 0; stateCount[4] = 0; int currentState = 0; for (int j = 0; j < maxJ; j++) { if (image.get(j, i)) { // Black pixel if ((currentState & 1) == 1) { // Counting white pixels currentState++; } stateCount[currentState]++; } else { // White pixel if ((currentState & 1) == 0) { // Counting black pixels if (currentState == 4) { // A winner? if (foundPatternCross(stateCount)) { // Yes boolean confirmed = handlePossibleCenter(stateCount, i, j); if (!confirmed) { do { // Advance to next black pixel j++; } while (j < maxJ && !image.get(j, i)); j--; // back up to that last white pixel } // Clear state to start looking again currentState = 0; stateCount[0] = 0; stateCount[1] = 0; stateCount[2] = 0; stateCount[3] = 0; stateCount[4] = 0; } else { // No, shift counts back by two stateCount[0] = stateCount[2]; stateCount[1] = stateCount[3]; stateCount[2] = stateCount[4]; stateCount[3] = 1; stateCount[4] = 0; currentState = 3; } } else { stateCount[++currentState]++; } } else { // Counting white pixels stateCount[currentState]++; } } } // for j=... if (foundPatternCross(stateCount)) { handlePossibleCenter(stateCount, i, maxJ); } // end if foundPatternCross } // for i=iSkip-1 ... FinderPattern[][] patternInfo = selectBestPatterns(); Vector result = new Vector(); for (int i = 0; i < patternInfo.length; i++) { FinderPattern[] pattern = patternInfo[i]; ResultPoint.orderBestPatterns(pattern); result.addElement(new FinderPatternInfo(pattern)); } if (result.isEmpty()) { return EMPTY_RESULT_ARRAY; } else { FinderPatternInfo[] resultArray = new FinderPatternInfo[result.size()]; for (int i = 0; i < result.size(); i++) { resultArray[i] = (FinderPatternInfo) result.elementAt(i); } return resultArray; } }
final FinderPatternInfo find(Map<DecodeHintType, ?> hints) throws NotFoundException { boolean tryHarder = hints != null && hints.containsKey(DecodeHintType.TRY_HARDER); int maxI = image.getHeight(); int maxJ = image.getWidth(); // We are looking for black/white/black/white/black modules in // 1:1:3:1:1 ratio; this tracks the number of such modules seen so far // Let's assume that the maximum version QR Code we support takes up 1/4 the height of the // image, and then account for the center being 3 modules in size. This gives the smallest // number of pixels the center could be, so skip this often. When trying harder, look for all // QR versions regardless of how dense they are. int iSkip = (3 * maxI) / (4 * MAX_MODULES); if (iSkip < MIN_SKIP || tryHarder) { iSkip = MIN_SKIP; } boolean done = false; int[] stateCount = new int[5]; for (int i = iSkip - 1; i < maxI && !done; i += iSkip) { // Get a row of black/white values stateCount[0] = 0; stateCount[1] = 0; stateCount[2] = 0; stateCount[3] = 0; stateCount[4] = 0; int currentState = 0; for (int j = 0; j < maxJ; j++) { if (image.get(j, i)) { // Black pixel if ((currentState & 1) == 1) { // Counting white pixels currentState++; } stateCount[currentState]++; } else { // White pixel if ((currentState & 1) == 0) { // Counting black pixels if (currentState == 4) { // A winner? if (foundPatternCross(stateCount)) { // Yes boolean confirmed = handlePossibleCenter(stateCount, i, j); if (confirmed) { // Start examining every other line. Checking each line turned out to be too // expensive and didn't improve performance. iSkip = 2; if (hasSkipped) { done = haveMultiplyConfirmedCenters(); } else { int rowSkip = findRowSkip(); if (rowSkip > stateCount[2]) { // Skip rows between row of lower confirmed center // and top of presumed third confirmed center // but back up a bit to get a full chance of detecting // it, entire width of center of finder pattern // Skip by rowSkip, but back off by stateCount[2] (size of last center // of pattern we saw) to be conservative, and also back off by iSkip which // is about to be re-added i += rowSkip - stateCount[2] - iSkip; j = maxJ - 1; } } } else { stateCount[0] = stateCount[2]; stateCount[1] = stateCount[3]; stateCount[2] = stateCount[4]; stateCount[3] = 1; stateCount[4] = 0; currentState = 3; continue; } // Clear state to start looking again currentState = 0; stateCount[0] = 0; stateCount[1] = 0; stateCount[2] = 0; stateCount[3] = 0; stateCount[4] = 0; } else { // No, shift counts back by two stateCount[0] = stateCount[2]; stateCount[1] = stateCount[3]; stateCount[2] = stateCount[4]; stateCount[3] = 1; stateCount[4] = 0; currentState = 3; } } else { stateCount[++currentState]++; } } else { // Counting white pixels stateCount[currentState]++; } } } if (foundPatternCross(stateCount)) { boolean confirmed = handlePossibleCenter(stateCount, i, maxJ); if (confirmed) { iSkip = stateCount[0]; if (hasSkipped) { // Found a third one done = haveMultiplyConfirmedCenters(); } } } } FinderPattern[] patternInfo = selectBestPatterns(); ResultPoint.orderBestPatterns(patternInfo); return new FinderPatternInfo(patternInfo); }