@Override public int compare(FinderPattern center1, FinderPattern center2) { float value = center2.getEstimatedModuleSize() - center1.getEstimatedModuleSize(); return value < 0.0 ? -1 : value > 0.0 ? 1 : 0; }
/** * @return the 3 best {@link FinderPattern}s from our list of candidates. The "best" are those * that have been detected at least {@link #CENTER_QUORUM} times, and whose module size * differs from the average among those patterns the least * @throws NotFoundException if 3 such finder patterns do not exist */ private FinderPattern[][] selectMutipleBestPatterns() throws NotFoundException { List<FinderPattern> possibleCenters = getPossibleCenters(); int size = possibleCenters.size(); if (size < 3) { // Couldn't find enough finder patterns throw NotFoundException.getNotFoundInstance(); } /* * Begin HE modifications to safely detect multiple codes of equal size */ if (size == 3) { return new FinderPattern[][] { new FinderPattern[] {possibleCenters.get(0), possibleCenters.get(1), possibleCenters.get(2)} }; } // Sort by estimated module size to speed up the upcoming checks Collections.sort(possibleCenters, new ModuleSizeComparator()); /* * Now lets start: build a list of tuples of three finder locations that * - feature similar module sizes * - are placed in a distance so the estimated module count is within the QR specification * - have similar distance between upper left/right and left top/bottom finder patterns * - form a triangle with 90° angle (checked by comparing top right/bottom left distance * with pythagoras) * * Note: we allow each point to be used for more than one code region: this might seem * counterintuitive at first, but the performance penalty is not that big. At this point, * we cannot make a good quality decision whether the three finders actually represent * a QR code, or are just by chance layouted so it looks like there might be a QR code there. * So, if the layout seems right, lets have the decoder try to decode. */ List<FinderPattern[]> results = new ArrayList<>(); // holder for the results for (int i1 = 0; i1 < (size - 2); i1++) { FinderPattern p1 = possibleCenters.get(i1); if (p1 == null) { continue; } for (int i2 = i1 + 1; i2 < (size - 1); i2++) { FinderPattern p2 = possibleCenters.get(i2); if (p2 == null) { continue; } // Compare the expected module sizes; if they are really off, skip float vModSize12 = (p1.getEstimatedModuleSize() - p2.getEstimatedModuleSize()) / Math.min(p1.getEstimatedModuleSize(), p2.getEstimatedModuleSize()); float vModSize12A = Math.abs(p1.getEstimatedModuleSize() - p2.getEstimatedModuleSize()); if (vModSize12A > DIFF_MODSIZE_CUTOFF && vModSize12 >= DIFF_MODSIZE_CUTOFF_PERCENT) { // break, since elements are ordered by the module size deviation there cannot be // any more interesting elements for the given p1. break; } for (int i3 = i2 + 1; i3 < size; i3++) { FinderPattern p3 = possibleCenters.get(i3); if (p3 == null) { continue; } // Compare the expected module sizes; if they are really off, skip float vModSize23 = (p2.getEstimatedModuleSize() - p3.getEstimatedModuleSize()) / Math.min(p2.getEstimatedModuleSize(), p3.getEstimatedModuleSize()); float vModSize23A = Math.abs(p2.getEstimatedModuleSize() - p3.getEstimatedModuleSize()); if (vModSize23A > DIFF_MODSIZE_CUTOFF && vModSize23 >= DIFF_MODSIZE_CUTOFF_PERCENT) { // break, since elements are ordered by the module size deviation there cannot be // any more interesting elements for the given p1. break; } FinderPattern[] test = {p1, p2, p3}; ResultPoint.orderBestPatterns(test); // Calculate the distances: a = topleft-bottomleft, b=topleft-topright, c = diagonal FinderPatternInfo info = new FinderPatternInfo(test); float dA = ResultPoint.distance(info.getTopLeft(), info.getBottomLeft()); float dC = ResultPoint.distance(info.getTopRight(), info.getBottomLeft()); float dB = ResultPoint.distance(info.getTopLeft(), info.getTopRight()); // Check the sizes float estimatedModuleCount = (dA + dB) / (p1.getEstimatedModuleSize() * 2.0f); if (estimatedModuleCount > MAX_MODULE_COUNT_PER_EDGE || estimatedModuleCount < MIN_MODULE_COUNT_PER_EDGE) { continue; } // Calculate the difference of the edge lengths in percent float vABBC = Math.abs((dA - dB) / Math.min(dA, dB)); if (vABBC >= 0.1f) { continue; } // Calculate the diagonal length by assuming a 90° angle at topleft float dCpy = (float) Math.sqrt(dA * dA + dB * dB); // Compare to the real distance in % float vPyC = Math.abs((dC - dCpy) / Math.min(dC, dCpy)); if (vPyC >= 0.1f) { continue; } // All tests passed! results.add(test); } // end iterate p3 } // end iterate p2 } // end iterate p1 if (!results.isEmpty()) { return results.toArray(new FinderPattern[results.size()][]); } // Nothing found! throw NotFoundException.getNotFoundInstance(); }