@Test public void testExistsRestrictedRange() throws SolverException, InterruptedException { BooleanFormula f; BooleanFormula _exists_10_20_bx_0 = qfm.exists(_x, ifm.makeNumber(10), ifm.makeNumber(20), _b_at_x_eq_0); BooleanFormula _exists_10_20_bx_1 = qfm.exists(_x, ifm.makeNumber(10), ifm.makeNumber(20), _b_at_x_eq_1); // (exists x in [10..20] . b[x] = 0) AND (forall x . b[x] = 0) is SAT f = bfm.and(_exists_10_20_bx_0, _forall_x_bx_0); assertThat(solver.isUnsat(f)).isFalse(); // (exists x in [10..20] . b[x] = 1) AND (forall x . b[x] = 0) is UNSAT f = bfm.and(_exists_10_20_bx_1, _forall_x_bx_0); assertThat(solver.isUnsat(f)).isTrue(); // (exists x in [10..20] . b[x] = 1) AND (forall x . b[x] = 1) is SAT f = bfm.and(_exists_10_20_bx_1, _forall_x_bx_1); assertThat(solver.isUnsat(f)).isFalse(); // (exists x in [10..20] . b[x] = 1) AND (b[10] = 0) is SAT f = bfm.and( _exists_10_20_bx_1, ifm.equal(afm.select(_b, ifm.makeNumber(10)), ifm.makeNumber(0))); assertThat(solver.isUnsat(f)).isFalse(); // (exists x in [10..20] . b[x] = 1) AND (b[1000] = 0) is SAT f = bfm.and( _exists_10_20_bx_1, ifm.equal(afm.select(_b, ifm.makeNumber(1000)), ifm.makeNumber(0))); assertThat(solver.isUnsat(f)).isFalse(); }
@Test public void testNotExistsArrayConjunct() throws SolverException, InterruptedException { BooleanFormula f; // (not exists x . not b[x] = 0) AND (b[123] = 1) is UNSAT f = bfm.and( Lists.newArrayList( bfm.not(qfm.exists(_x, bfm.not(_b_at_x_eq_0))), ifm.equal(afm.select(_b, ifm.makeNumber(123)), ifm.makeNumber(1)))); assertThat(solver.isUnsat(f)).isTrue(); // (not exists x . not b[x] = 0) AND (b[123] = 0) is SAT f = bfm.and( bfm.not(qfm.exists(_x, bfm.not(_b_at_x_eq_0))), ifm.equal(afm.select(_b, ifm.makeNumber(123)), ifm.makeNumber(0))); assertThat(solver.isUnsat(f)).isFalse(); // (not exists x . b[x] = 0) AND (b[123] = 0) is UNSAT f = bfm.and( bfm.not(qfm.exists(_x, _b_at_x_eq_0)), ifm.equal(afm.select(_b, ifm.makeNumber(123)), ifm.makeNumber(0))); assertThat(solver.isUnsat(f)).isTrue(); }
@Test public void testContradiction() throws SolverException, InterruptedException { // forall x . x = x+1 is UNSAT BooleanFormula f = qfm.forall(_x, ifm.equal(_x, ifm.add(_x, ifm.makeNumber(1)))); assertThat(solver.isUnsat(f)).isTrue(); BooleanFormula g = qfm.exists(_x, ifm.equal(_x, ifm.add(_x, ifm.makeNumber(1)))); assertThat(solver.isUnsat(g)).isTrue(); }
@Test public void testExistsArrayDisjunct() throws SolverException, InterruptedException { BooleanFormula f; // (exists x . b[x] = 0) OR (forall x . b[x] = 1) is SAT f = bfm.or(qfm.exists(_x, _b_at_x_eq_0), qfm.forall(_x, _b_at_x_eq_1)); assertThat(solver.isUnsat(f)).isFalse(); // (exists x . b[x] = 1) OR (exists x . b[x] = 1) is SAT f = bfm.or(qfm.exists(_x, _b_at_x_eq_1), qfm.exists(_x, _b_at_x_eq_1)); assertThat(solver.isUnsat(f)).isFalse(); }
@Test public void testForallRestrictedRange() throws SolverException, InterruptedException { BooleanFormula f; BooleanFormula _forall_10_20_bx_0 = qfm.forall(_x, ifm.makeNumber(10), ifm.makeNumber(20), _b_at_x_eq_0); BooleanFormula _forall_10_20_bx_1 = qfm.forall(_x, ifm.makeNumber(10), ifm.makeNumber(20), _b_at_x_eq_1); // (forall x in [10..20] . b[x] = 0) AND (forall x . b[x] = 0) is SAT f = bfm.and(_forall_10_20_bx_0, qfm.forall(_x, _b_at_x_eq_0)); assert_().about(BooleanFormula()).that(f).isSatisfiable(); // (forall x in [10..20] . b[x] = 1) AND (exits x in [15..17] . b[x] = 0) is UNSAT f = bfm.and( _forall_10_20_bx_1, qfm.exists(_x, ifm.makeNumber(15), ifm.makeNumber(17), _b_at_x_eq_0)); assertThat(solver.isUnsat(f)).isTrue(); // (forall x in [10..20] . b[x] = 1) AND b[10] = 0 is UNSAT f = bfm.and( _forall_10_20_bx_1, ifm.equal(afm.select(_b, ifm.makeNumber(10)), ifm.makeNumber(0))); assertThat(solver.isUnsat(f)).isTrue(); // (forall x in [10..20] . b[x] = 1) AND b[20] = 0 is UNSAT f = bfm.and( _forall_10_20_bx_1, ifm.equal(afm.select(_b, ifm.makeNumber(20)), ifm.makeNumber(0))); assertThat(solver.isUnsat(f)).isTrue(); // (forall x in [10..20] . b[x] = 1) AND b[9] = 0 is SAT f = bfm.and( _forall_10_20_bx_1, ifm.equal(afm.select(_b, ifm.makeNumber(9)), ifm.makeNumber(0))); assertThat(solver.isUnsat(f)).isFalse(); // (forall x in [10..20] . b[x] = 1) AND b[21] = 0 is SAT f = bfm.and( _forall_10_20_bx_1, ifm.equal(afm.select(_b, ifm.makeNumber(21)), ifm.makeNumber(0))); assertThat(solver.isUnsat(f)).isFalse(); // (forall x in [10..20] . b[x] = 1) AND (forall x in [0..20] . b[x] = 0) is UNSAT f = bfm.and( _forall_10_20_bx_1, qfm.forall(_x, ifm.makeNumber(0), ifm.makeNumber(20), _b_at_x_eq_0)); assertThat(solver.isUnsat(f)).isTrue(); // (forall x in [10..20] . b[x] = 1) AND (forall x in [0..9] . b[x] = 0) is SAT f = bfm.and( _forall_10_20_bx_1, qfm.forall(_x, ifm.makeNumber(0), ifm.makeNumber(9), _b_at_x_eq_0)); assertThat(solver.isUnsat(f)).isFalse(); }
@Test public void testExistsArrayConjunct() throws SolverException, InterruptedException { BooleanFormula f; // (exists x . b[x] = 0) AND (b[123] = 1) is SAT f = bfm.and( qfm.exists(_x, _b_at_x_eq_0), ifm.equal(afm.select(_b, ifm.makeNumber(123)), ifm.makeNumber(1))); assertThat(solver.isUnsat(f)).isFalse(); // (exists x . b[x] = 1) AND (forall x . b[x] = 0) is UNSAT f = bfm.and(qfm.exists(_x, _b_at_x_eq_1), _forall_x_bx_0); assertThat(solver.isUnsat(f)).isTrue(); // (exists x . b[x] = 0) AND (forall x . b[x] = 0) is SAT f = bfm.and(qfm.exists(_x, _b_at_x_eq_0), _forall_x_bx_0); assertThat(solver.isUnsat(f)).isFalse(); }
@Test public void testSimple() throws SolverException, InterruptedException { // forall x . x+2 = x+1+1 is SAT BooleanFormula f = qfm.forall( _x, ifm.equal( ifm.add(_x, ifm.makeNumber(2)), ifm.add(ifm.add(_x, ifm.makeNumber(1)), ifm.makeNumber(1)))); assertThat(solver.isUnsat(f)).isFalse(); }
@Test public void testForallArrayDisjunct() throws SolverException, InterruptedException { BooleanFormula f; // (forall x . b[x] = 0) AND (b[123] = 1 OR b[123] = 0) is SAT f = bfm.and( qfm.forall(_x, _b_at_x_eq_0), bfm.or( ifm.equal(afm.select(_b, ifm.makeNumber(123)), ifm.makeNumber(1)), ifm.equal(afm.select(_b, ifm.makeNumber(123)), ifm.makeNumber(0)))); assertThat(solver.isUnsat(f)).isFalse(); // (forall x . b[x] = 0) OR (b[123] = 1) is SAT f = bfm.or( qfm.forall(_x, _b_at_x_eq_0), ifm.equal(afm.select(_b, ifm.makeNumber(123)), ifm.makeNumber(1))); assertThat(solver.isUnsat(f)).isFalse(); }