/** * Creates the initial multisig contract and incomplete refund transaction which can be requested * at the appropriate time using {@link PaymentChannelClientState#getIncompleteRefundTransaction} * and {@link PaymentChannelClientState#getMultisigContract()}. The way the contract is crafted * can be adjusted by overriding {@link * PaymentChannelClientState#editContractSendRequest(com.google.bitcoin.core.Wallet.SendRequest)}. * By default unconfirmed coins are allowed to be used, as for micropayments the risk should be * relatively low. * * @throws ValueOutOfRangeException if the value being used is too small to be accepted by the * network * @throws InsufficientMoneyException if the wallet doesn't contain enough balance to initiate */ public synchronized void initiate() throws ValueOutOfRangeException, InsufficientMoneyException { final NetworkParameters params = wallet.getParams(); Transaction template = new Transaction(params); // We always place the client key before the server key because, if either side wants some // privacy, they can // use a fresh key for the the multisig contract and nowhere else List<ECKey> keys = Lists.newArrayList(myKey, serverMultisigKey); // There is also probably a change output, but we don't bother shuffling them as it's obvious // from the // format which one is the change. If we start obfuscating the change output better in future // this may // be worth revisiting. TransactionOutput multisigOutput = template.addOutput(totalValue, ScriptBuilder.createMultiSigOutputScript(2, keys)); if (multisigOutput.getMinNonDustValue().compareTo(totalValue) > 0) throw new ValueOutOfRangeException("totalValue too small to use"); Wallet.SendRequest req = Wallet.SendRequest.forTx(template); req.coinSelector = AllowUnconfirmedCoinSelector.get(); editContractSendRequest(req); req.shuffleOutputs = false; // TODO: Fix things so shuffling is usable. wallet.completeTx(req); Coin multisigFee = req.tx.getFee(); multisigContract = req.tx; // Build a refund transaction that protects us in the case of a bad server that's just trying to // cause havoc // by locking up peoples money (perhaps as a precursor to a ransom attempt). We time lock it so // the server // has an assurance that we cannot take back our money by claiming a refund before the channel // closes - this // relies on the fact that since Bitcoin 0.8 time locked transactions are non-final. This will // need to change // in future as it breaks the intended design of timelocking/tx replacement, but for now it // simplifies this // specific protocol somewhat. refundTx = new Transaction(params); refundTx .addInput(multisigOutput) .setSequenceNumber(0); // Allow replacement when it's eventually reactivated. refundTx.setLockTime(expiryTime); if (totalValue.compareTo(Coin.CENT) < 0) { // Must pay min fee. final Coin valueAfterFee = totalValue.subtract(Transaction.REFERENCE_DEFAULT_MIN_TX_FEE); if (Transaction.MIN_NONDUST_OUTPUT.compareTo(valueAfterFee) > 0) throw new ValueOutOfRangeException("totalValue too small to use"); refundTx.addOutput(valueAfterFee, myKey.toAddress(params)); refundFees = multisigFee.add(Transaction.REFERENCE_DEFAULT_MIN_TX_FEE); } else { refundTx.addOutput(totalValue, myKey.toAddress(params)); refundFees = multisigFee; } refundTx.getConfidence().setSource(TransactionConfidence.Source.SELF); log.info( "initiated channel with multi-sig contract {}, refund {}", multisigContract.getHashAsString(), refundTx.getHashAsString()); state = State.INITIATED; // Client should now call getIncompleteRefundTransaction() and send it to the server. }
/** * Closes this channel and broadcasts the highest value payment transaction on the network. * * <p>This will set the state to {@link State#CLOSED} if the transaction is successfully broadcast * on the network. If we fail to broadcast for some reason, the state is set to {@link * State#ERROR}. * * <p>If the current state is before {@link State#READY} (ie we have not finished initializing the * channel), we simply set the state to {@link State#CLOSED} and let the client handle getting its * refund transaction confirmed. * * @return a future which completes when the provided multisig contract successfully broadcasts, * or throws if the broadcast fails for some reason. Note that if the network simply rejects * the transaction, this future will never complete, a timeout should be used. * @throws InsufficientMoneyException If the payment tx would have cost more in fees to spend than * it is worth. */ public synchronized ListenableFuture<Transaction> close() throws InsufficientMoneyException { if (storedServerChannel != null) { StoredServerChannel temp = storedServerChannel; storedServerChannel = null; StoredPaymentChannelServerStates channels = (StoredPaymentChannelServerStates) wallet.getExtensions().get(StoredPaymentChannelServerStates.EXTENSION_ID); channels.closeChannel( temp); // May call this method again for us (if it wasn't the original caller) if (state.compareTo(State.CLOSING) >= 0) return closedFuture; } if (state.ordinal() < State.READY.ordinal()) { log.error("Attempt to settle channel in state " + state); state = State.CLOSED; closedFuture.set(null); return closedFuture; } if (state != State.READY) { // TODO: What is this codepath for? log.warn("Failed attempt to settle a channel in state " + state); return closedFuture; } Transaction tx = null; try { Wallet.SendRequest req = makeUnsignedChannelContract(bestValueToMe); tx = req.tx; // Provide a throwaway signature so that completeTx won't complain out about unsigned inputs // it doesn't // know how to sign. Note that this signature does actually have to be valid, so we can't use // a dummy // signature to save time, because otherwise completeTx will try to re-sign it to make it // valid and then // die. We could probably add features to the SendRequest API to make this a bit more // efficient. signMultisigInput(tx, Transaction.SigHash.NONE, true); // Let wallet handle adding additional inputs/fee as necessary. req.shuffleOutputs = false; req.missingSigsMode = Wallet.MissingSigsMode.USE_DUMMY_SIG; wallet.completeTx(req); // TODO: Fix things so shuffling is usable. feePaidForPayment = req.tx.getFee(); log.info("Calculated fee is {}", feePaidForPayment); if (feePaidForPayment.compareTo(bestValueToMe) > 0) { final String msg = String.format( Locale.US, "Had to pay more in fees (%s) than the channel was worth (%s)", feePaidForPayment, bestValueToMe); throw new InsufficientMoneyException(feePaidForPayment.subtract(bestValueToMe), msg); } // Now really sign the multisig input. signMultisigInput(tx, Transaction.SigHash.ALL, false); // Some checks that shouldn't be necessary but it can't hurt to check. tx.verify(); // Sanity check syntax. for (TransactionInput input : tx.getInputs()) input.verify(); // Run scripts and ensure it is valid. } catch (InsufficientMoneyException e) { throw e; // Don't fall through. } catch (Exception e) { log.error( "Could not verify self-built tx\nMULTISIG {}\nCLOSE {}", multisigContract, tx != null ? tx : ""); throw new RuntimeException(e); // Should never happen. } state = State.CLOSING; log.info("Closing channel, broadcasting tx {}", tx); // The act of broadcasting the transaction will add it to the wallet. ListenableFuture<Transaction> future = broadcaster.broadcastTransaction(tx).future(); Futures.addCallback( future, new FutureCallback<Transaction>() { @Override public void onSuccess(Transaction transaction) { log.info("TX {} propagated, channel successfully closed.", transaction.getHash()); state = State.CLOSED; closedFuture.set(transaction); } @Override public void onFailure(Throwable throwable) { log.error("Failed to settle channel, could not broadcast", throwable); state = State.ERROR; closedFuture.setException(throwable); } }); return closedFuture; }