public void reconstruct(final Vector3 top, final Vector3 bottom, final double radius) { // our temp vars final Vector3 localTranslation = Vector3.fetchTempInstance(); final Vector3 capsuleUp = Vector3.fetchTempInstance(); // first make the capsule the right shape height = top.distance(bottom); this.radius = radius; setGeometryData(); // now orient it in space. localTranslation.set(_localTransform.getTranslation()); top.add(bottom, localTranslation).multiplyLocal(.5); // rotation that takes us from 0,1,0 to the unit vector described by top/center. top.subtract(localTranslation, capsuleUp).normalizeLocal(); final Matrix3 rotation = Matrix3.fetchTempInstance(); rotation.fromStartEndLocal(Vector3.UNIT_Y, capsuleUp); _localTransform.setRotation(rotation); Vector3.releaseTempInstance(localTranslation); Vector3.releaseTempInstance(capsuleUp); Matrix3.releaseTempInstance(rotation); updateWorldTransform(false); }
/** * Calculates the minimum bounding sphere of 4 points. Used in welzl's algorithm. * * @param O The 1st point inside the sphere. * @param A The 2nd point inside the sphere. * @param B The 3rd point inside the sphere. * @param C The 4th point inside the sphere. * @see #calcWelzl(java.nio.FloatBuffer) */ private void setSphere(final Vector3 O, final Vector3 A, final Vector3 B, final Vector3 C) { final Vector3 a = A.subtract(O, null); final Vector3 b = B.subtract(O, null); final Vector3 c = C.subtract(O, null); final double Denominator = 2.0 * (a.getX() * (b.getY() * c.getZ() - c.getY() * b.getZ()) - b.getX() * (a.getY() * c.getZ() - c.getY() * a.getZ()) + c.getX() * (a.getY() * b.getZ() - b.getY() * a.getZ())); if (Denominator == 0) { _center.set(0, 0, 0); setRadius(0); } else { final Vector3 o = a.cross(b, null) .multiplyLocal(c.lengthSquared()) .addLocal(c.cross(a, null).multiplyLocal(b.lengthSquared())) .addLocal(b.cross(c, null).multiplyLocal(a.lengthSquared())) .divideLocal(Denominator); setRadius(o.length() * radiusEpsilon); O.add(o, _center); } }
/** * Calculates the minimum bounding sphere of 3 points. Used in welzl's algorithm. * * @param O The 1st point inside the sphere. * @param A The 2nd point inside the sphere. * @param B The 3rd point inside the sphere. * @see #calcWelzl(java.nio.FloatBuffer) */ private void setSphere(final Vector3 O, final Vector3 A, final Vector3 B) { final Vector3 a = A.subtract(O, null); final Vector3 b = B.subtract(O, null); final Vector3 acrossB = a.cross(b, null); final double Denominator = 2.0 * acrossB.dot(acrossB); if (Denominator == 0) { _center.set(0, 0, 0); setRadius(0); } else { final Vector3 o = acrossB .cross(a, null) .multiplyLocal(b.lengthSquared()) .addLocal(b.cross(acrossB, null).multiplyLocal(a.lengthSquared())) .divideLocal(Denominator); setRadius(o.length() * radiusEpsilon); O.add(o, _center); } }
/** * Update the vertices for this particle, taking size, spin and viewer into consideration. In the * case of particle type ParticleType.GeomMesh, the original triangle normal is maintained rather * than rotating it to face the camera or parent vectors. * * @param cam Camera to use in determining viewer aspect. If null, or if parent is not set to * camera facing, parent's left and up vectors are used. */ public void updateVerts(final Camera cam) { final double orient = parent.getParticleOrientation() + values[VAL_CURRENT_SPIN]; final double currSize = values[VAL_CURRENT_SIZE]; if (type == ParticleSystem.ParticleType.GeomMesh || type == ParticleSystem.ParticleType.Point) {; // nothing to do } else if (cam != null && parent.isCameraFacing()) { final ReadOnlyVector3 camUp = cam.getUp(); final ReadOnlyVector3 camLeft = cam.getLeft(); final ReadOnlyVector3 camDir = cam.getDirection(); if (parent.isVelocityAligned()) { bbX.set(_velocity).normalizeLocal().multiplyLocal(currSize); camDir.cross(bbX, bbY).normalizeLocal().multiplyLocal(currSize); } else if (orient == 0) { bbX.set(camLeft).multiplyLocal(currSize); bbY.set(camUp).multiplyLocal(currSize); } else { final double cA = MathUtils.cos(orient) * currSize; final double sA = MathUtils.sin(orient) * currSize; bbX.set(camLeft) .multiplyLocal(cA) .addLocal(camUp.getX() * sA, camUp.getY() * sA, camUp.getZ() * sA); bbY.set(camLeft) .multiplyLocal(-sA) .addLocal(camUp.getX() * cA, camUp.getY() * cA, camUp.getZ() * cA); } } else { bbX.set(parent.getLeftVector()).multiplyLocal(0); bbY.set(parent.getUpVector()).multiplyLocal(0); } final Vector3 tempVec3 = Vector3.fetchTempInstance(); final FloatBuffer vertexBuffer = parent.getParticleGeometry().getMeshData().getVertexBuffer(); switch (type) { case Quad: { _position.subtract(bbX, tempVec3).subtractLocal(bbY); BufferUtils.setInBuffer(tempVec3, vertexBuffer, startIndex + 0); _position.subtract(bbX, tempVec3).addLocal(bbY); BufferUtils.setInBuffer(tempVec3, vertexBuffer, startIndex + 1); _position.add(bbX, tempVec3).addLocal(bbY); BufferUtils.setInBuffer(tempVec3, vertexBuffer, startIndex + 2); _position.add(bbX, tempVec3).subtractLocal(bbY); BufferUtils.setInBuffer(tempVec3, vertexBuffer, startIndex + 3); break; } case GeomMesh: { final Quaternion tempQuat = Quaternion.fetchTempInstance(); final ReadOnlyVector3 norm = triModel.getNormal(); if (orient != 0) { tempQuat.fromAngleNormalAxis(orient, norm); } for (int x = 0; x < 3; x++) { if (orient != 0) { tempQuat.apply(triModel.get(x), tempVec3); } else { tempVec3.set(triModel.get(x)); } tempVec3.multiplyLocal(currSize).addLocal(_position); BufferUtils.setInBuffer(tempVec3, vertexBuffer, startIndex + x); } Quaternion.releaseTempInstance(tempQuat); break; } case Triangle: { _position .subtract(3 * bbX.getX(), 3 * bbX.getY(), 3 * bbX.getZ(), tempVec3) .subtractLocal(bbY); BufferUtils.setInBuffer(tempVec3, vertexBuffer, startIndex + 0); _position.add(bbX, tempVec3).addLocal(3 * bbY.getX(), 3 * bbY.getY(), 3 * bbY.getZ()); BufferUtils.setInBuffer(tempVec3, vertexBuffer, startIndex + 1); _position.add(bbX, tempVec3).subtractLocal(bbY); BufferUtils.setInBuffer(tempVec3, vertexBuffer, startIndex + 2); break; } case Line: { _position.subtract(bbX, tempVec3); BufferUtils.setInBuffer(tempVec3, vertexBuffer, startIndex); _position.add(bbX, tempVec3); BufferUtils.setInBuffer(tempVec3, vertexBuffer, startIndex + 1); break; } case Point: { BufferUtils.setInBuffer(_position, vertexBuffer, startIndex); break; } } Vector3.releaseTempInstance(tempVec3); }