public final ClusNode getTree(int fold) { int idx = Arrays.binarySearch(m_Folds, fold); ClusNode node = m_Nodes[idx]; if (node.hasBestTest() && node.atBottomLevel()) { OptXValSplit split = null; int nb = getNbChildren(); for (int i = 0; i < nb; i++) { OptXValSplit msplit = (OptXValSplit) getChild(i); if (msplit.contains(fold)) { split = msplit; break; } } int arity = node.updateArity(); for (int i = 0; i < arity; i++) { OptXValNode subnode = (OptXValNode) split.getChild(i); node.setChild(subnode.getTree(fold), i); } } return node; }
public void pruneRecursive(ClusNode node) { if (node.atBottomLevel()) { return; } for (int i = 0; i < node.getNbChildren(); i++) { ClusNode child = (ClusNode) node.getChild(i); pruneRecursive(child); } RegressionStat stat = (RegressionStat) node.getClusteringStat(); double rmsLeaf = stat.getRMSE(m_ClusteringWeights); double adjustedErrorLeaf = rmsLeaf * pruningFactor(stat.getTotalWeight(), 1); double rmsSubTree = Math.sqrt(node.estimateClusteringSS(m_ClusteringWeights) / stat.getTotalWeight()); double adjustedErrorTree = rmsSubTree * pruningFactor(stat.getTotalWeight(), node.getModelSize()); // System.out.println("C leaf: "+rmsLeaf+" tree: "+rmsSubTree); // System.out.println("C leafadj: "+adjustedErrorLeaf +" treeadj: "+rmsSubTree); if ((adjustedErrorLeaf <= adjustedErrorTree) || (adjustedErrorLeaf < (m_GlobalDeviation * 0.00001))) { node.makeLeaf(); } }