예제 #1
0
  public LikeliHood likelihood(IGMap map, DoubleOrientedPoint p, double[] readings) {
    List<ScoredMove> moveList = new ArrayList<ScoredMove>();

    for (double xx = -llsamplerange; xx <= llsamplerange; xx += llsamplestep) {
      for (double yy = -llsamplerange; yy <= llsamplerange; yy += llsamplestep) {
        for (double tt = -lasamplerange; tt <= lasamplerange; tt += lasamplestep) {
          DoubleOrientedPoint rp = new DoubleOrientedPoint(p.x, p.y, p.theta);
          rp.x += xx;
          rp.y += yy;
          rp.theta += tt;

          ScoredMove sm = new ScoredMove();
          sm.pose = rp;

          LikeliHoodAndScore ls = likelihoodAndScore(map, rp, readings);
          sm.score = ls.s;
          sm.likelihood = ls.l;

          moveList.add(sm);
        }
      }
    }

    // normalize the likelihood
    double lmax = -1e9;
    double lcum = 0;
    for (ScoredMove it : moveList) {
      lmax = it.likelihood > lmax ? it.likelihood : lmax;
    }
    for (ScoredMove it : moveList) {
      lcum += Math.exp(it.likelihood - lmax);
      it.likelihood = Math.exp(it.likelihood - lmax);
    }

    DoubleOrientedPoint mean = new DoubleOrientedPoint(0.0, 0.0, 0.0);
    for (ScoredMove it : moveList) {
      double x = mean.x + it.pose.x * it.likelihood;
      double y = mean.y + it.pose.y * it.likelihood;
      double theta = mean.theta + it.pose.theta * it.likelihood;
      mean.x = x;
      mean.y = y;
      mean.theta = theta;
    }
    mean.x = mean.x * (1. / lcum);
    mean.y = mean.y * (1. / lcum);
    mean.theta = mean.theta * (1. / lcum);

    Covariance3 cov = new Covariance3(0., 0., 0., 0., 0., 0.);
    for (ScoredMove it : moveList) {
      DoubleOrientedPoint delta = DoubleOrientedPoint.minus(it.pose, mean);
      delta.theta = Math.atan2(Math.sin(delta.theta), Math.cos(delta.theta));
      cov.xx += delta.x * delta.x * it.likelihood;
      cov.yy += delta.y * delta.y * it.likelihood;
      cov.tt += delta.theta * delta.theta * it.likelihood;
      cov.xy += delta.x * delta.y * it.likelihood;
      cov.xt += delta.x * delta.theta * it.likelihood;
      cov.yt += delta.y * delta.theta * it.likelihood;
    }
    cov.xx /= lcum;
    cov.xy /= lcum;
    cov.xt /= lcum;
    cov.yy /= lcum;
    cov.yt /= lcum;
    cov.tt /= lcum;

    return new LikeliHood(lmax, mean, cov, Math.log(lcum));
  }
예제 #2
0
  public double icpStep(
      DoubleOrientedPoint pret, IGMap map, DoubleOrientedPoint p, double[] readings) {
    int angleIndex = initialBeamsSkip;
    DoubleOrientedPoint lp = new DoubleOrientedPoint(p.x, p.y, p.theta);

    lp.x += Math.cos(p.theta) * laserPose.x - Math.sin(p.theta) * laserPose.y;
    lp.y += Math.sin(p.theta) * laserPose.x + Math.cos(p.theta) * laserPose.y;
    lp.theta += laserPose.theta;
    int skip = 0;
    double freeDelta = map.getDelta() * freeCellRatio;
    List<DoublePointPair> pairs = new ArrayList<DoublePointPair>();

    for (int rIndex = initialBeamsSkip; rIndex < readings.length; rIndex++, angleIndex++) {
      skip++;
      skip = skip > likelihoodSkip ? 0 : skip;
      if (readings[rIndex] > usableRange || readings[rIndex] == 0.0) continue;
      if (skip != 0) continue;
      DoublePoint phit = new DoublePoint(lp.x, lp.y);

      phit.x += readings[rIndex] * Math.cos(lp.theta + laserAngles[angleIndex]);
      phit.y += readings[rIndex] * Math.sin(lp.theta + laserAngles[angleIndex]);
      IntPoint iphit = map.world2map(phit);

      DoublePoint pfree = new DoublePoint(lp.x, lp.y);
      pfree.x +=
          (readings[rIndex] - map.getDelta() * freeDelta)
              * Math.cos(lp.theta + laserAngles[angleIndex]);
      pfree.y +=
          (readings[rIndex] - map.getDelta() * freeDelta)
              * Math.sin(lp.theta + laserAngles[angleIndex]);
      pfree.x = pfree.x - phit.x;
      pfree.y = pfree.y - phit.y;

      IntPoint ipfree = map.world2map(pfree);
      boolean found = false;
      DoublePoint bestMu = new DoublePoint(0., 0.);
      DoublePoint bestCell = new DoublePoint(0., 0.);
      for (int xx = -kernelSize; xx <= kernelSize; xx++)
        for (int yy = -kernelSize; yy <= kernelSize; yy++) {
          IntPoint pr = new IntPoint(iphit.x + xx, iphit.y + yy);
          IntPoint pf = new IntPoint(pr.x + ipfree.x, pr.y + ipfree.y);
          PointAccumulator cell = (PointAccumulator) map.cell(pr, true);
          PointAccumulator fcell = (PointAccumulator) map.cell(pf, true);

          if (cell.doubleValue() > fullnessThreshold && fcell.doubleValue() < fullnessThreshold) {
            DoublePoint mu = DoublePoint.minus(phit, cell.mean());
            if (!found) {
              bestMu = mu;
              bestCell = cell.mean();
              found = true;
            } else if (DoublePoint.mulD(mu, mu) < DoublePoint.mulD(bestMu, bestMu)) {
              bestMu = mu;
              bestCell = cell.mean();
            }
          }
        }
      if (found) {
        pairs.add(new DoublePointPair(phit, bestCell));
      }
    }

    DoubleOrientedPoint result = new DoubleOrientedPoint(0.0, 0.0, 0.0);
    LOG.error("result(" + pairs.size() + ")=" + result.x + " " + result.y + " " + result.theta);
    pret.x = p.x + result.x;
    pret.y = p.y + result.y;
    pret.theta = p.theta + result.theta;
    pret.theta = Math.atan2(Math.sin(pret.theta), Math.cos(pret.theta));
    return score(map, p, readings);
  }
예제 #3
0
  public double optimize(
      DoubleOrientedPoint _mean,
      Covariance3 _cov,
      IGMap map,
      DoubleOrientedPoint init,
      double[] readings) {
    List<ScoredMove> moveList = new ArrayList<ScoredMove>();
    double bestScore = -1;
    DoubleOrientedPoint currentPose = init;
    ScoredMove sm = new ScoredMove(currentPose, 0, 0);
    LikeliHoodAndScore ls = likelihoodAndScore(map, currentPose, readings);
    sm.likelihood = ls.l;
    sm.score = ls.s;
    double currentScore = sm.score;
    moveList.add(sm);
    double adelta = optAngularDelta, ldelta = optLinearDelta;
    int refinement = 0;

    do {
      if (bestScore >= currentScore) {
        refinement++;
        adelta *= .5;
        ldelta *= .5;
      }
      bestScore = currentScore;
      DoubleOrientedPoint bestLocalPose = currentPose;
      DoubleOrientedPoint localPose = currentPose;

      Move move = Move.Front;
      do {
        localPose = currentPose;
        switch (move) {
          case Front:
            localPose.x += ldelta;
            move = Move.Back;
            break;
          case Back:
            localPose.x -= ldelta;
            move = Move.Left;
            break;
          case Left:
            localPose.y -= ldelta;
            move = Move.Right;
            break;
          case Right:
            localPose.y += ldelta;
            move = Move.TurnLeft;
            break;
          case TurnLeft:
            localPose.theta += adelta;
            move = Move.TurnRight;
            break;
          case TurnRight:
            localPose.theta -= adelta;
            move = Move.Done;
            break;
          default:
        }
        double localScore = 0, localLikelihood = 0;
        // update the score
        ls = likelihoodAndScore(map, localPose, readings);
        localLikelihood = ls.s;
        localLikelihood = ls.l;
        if (localScore > currentScore) {
          currentScore = localScore;
          bestLocalPose = localPose;
        }
        sm.score = localScore;
        sm.likelihood = localLikelihood;
        sm.pose = localPose;
        moveList.add(sm);
        // update the move list
      } while (move != Move.Done);
      currentPose = bestLocalPose;
      // here we look for the best move;
    } while (currentScore > bestScore || refinement < optRecursiveIterations);

    // normalize the likelihood
    double lmin = 1e9;
    double lmax = -1e9;
    for (ScoredMove it : moveList) {
      lmin = it.likelihood < lmin ? it.likelihood : lmin;
      lmax = it.likelihood > lmax ? it.likelihood : lmax;
    }
    for (ScoredMove it : moveList) {
      it.likelihood = Math.exp(it.likelihood - lmax);
    }
    // compute the mean
    DoubleOrientedPoint mean = new DoubleOrientedPoint(0.0, 0.0, 0.0);
    double lacc = 0;
    for (ScoredMove it : moveList) {
      mean = DoubleOrientedPoint.plus(mean, DoubleOrientedPoint.mulN(it.pose, it.likelihood));
      lacc += it.likelihood;
    }
    mean = DoubleOrientedPoint.mulN(mean, (1. / lacc));
    Covariance3 cov = new Covariance3(0., 0., 0., 0., 0., 0.);
    for (ScoredMove it : moveList) {
      DoubleOrientedPoint delta = DoubleOrientedPoint.minus(it.pose, mean);
      delta.theta = Math.atan2(Math.sin(delta.theta), Math.cos(delta.theta));
      cov.xx += delta.x * delta.x * it.likelihood;
      cov.yy += delta.y * delta.y * it.likelihood;
      cov.tt += delta.theta * delta.theta * it.likelihood;
      cov.xy += delta.x * delta.y * it.likelihood;
      cov.xt += delta.x * delta.theta * it.likelihood;
      cov.yt += delta.y * delta.theta * it.likelihood;
    }
    cov.xx /= lacc;
    cov.xy /= lacc;
    cov.xt /= lacc;
    cov.yy /= lacc;
    cov.yt /= lacc;
    cov.tt /= lacc;

    _mean = currentPose;
    _cov = cov;
    return bestScore;
  }