public void decode() { int v = vec.get(idx); if (WAHBitSet.isAFill(v)) { fillWord = (isOneFill(v) ? ALLONES : 0); nWords = v & MAXCNT; fill = true; } else { nWords = 1; fill = false; } }
// this function tries to advance the run by nWords // sometimes it is not possible, in that case it returns how much it advanced. public int inc(int nWords) { int orig = nWords; nWords--; while (nWords > 0) { ++idx; int v = vec.get(idx); if (isAFill(v)) { int words = v & MAXCNT; if (words > nWords) { --idx; break; } nWords -= words; } else { nWords--; } } return orig - nWords; }
private void setBit(int ind, int val) { assert val == 0 || val == 1; if (ind >= numBits()) { int diff = ind - numBits() + 1; if (active.nbits > 0) { if (ind + 1 >= nbits + MAXBITS) { diff -= MAXBITS - active.nbits; active.val <<= (MAXBITS - active.nbits); if (diff == 0) active.val += (val != 0 ? 1 : 0); appendLiteral(); } else { active.nbits += diff; active.val <<= diff; active.val += (val != 0 ? 1 : 0); diff = 0; } } if (diff != 0) { int w = diff / MAXBITS; diff -= w * MAXBITS; if (diff != 0) { if (w > 1) { appendCounter(0, w); } else if (w != 0) { appendLiteral(); } active.nbits = diff; active.val += (val != 0 ? 1 : 0); } else if (val != 0) { if (w > 2) { appendCounter(0, w - 1); } else if (w == 2) { appendLiteral(); } active.val = 1; appendLiteral(); } else { if (w > 1) { appendCounter(0, w); } else if (w != 0) { appendLiteral(); } } } if (numBits() != ind + 1) logger.warning("Warning"); if (nset != 0) nset += (val != 0 ? 1 : 0); return; } else if (ind >= nbits) { // modify an active bit int u = active.val; if (val != 0) { active.val |= (1 << (active.nbits - (ind - nbits) - 1)); } else { active.val &= ~(1 << (active.nbits - (ind - nbits) - 1)); } if (nset != 0 && (u != active.val)) nset += (val != 0 ? 1 : -1); return; } else if (vec.size() * MAXBITS == nbits) { // uncompressed int i = ind / MAXBITS; int u = vec.get(i); int w = (1 << (SECONDBIT - (ind % MAXBITS))); if (val != 0) vec.setQuick(i, u |= w); else vec.setQuick(i, u &= ~w); if (nset != 0 && (vec.getQuick(i) != u)) nset += (val != 0 ? 1 : -1); return; } // the code after this has not been verified at all... // should proceed with caution. // compressed bit vector -- // the bit to be modified is in vec if (RUN_UNTESTED_CODE) { int idx = 0; int compressed = 0, cnt = 0, ind1 = 0, ind0 = ind; int current = 0; // current bit value while ((ind0 > 0) && (idx < vec.size())) { int v = vec.getQuick(idx); if (isAFill(v)) { // a fill cnt = ((v) & MAXCNT) * MAXBITS; if (cnt > ind0) { // found the location current = (isOneFill(v) ? 1 : 0); compressed = 1; ind1 = ind0; ind0 = 0; } else { ind0 -= cnt; ind1 = ind0; ++idx; } } else { // a literal word cnt = MAXBITS; if (MAXBITS > ind0) { // found the location current = (1 & ((v) >>> (SECONDBIT - ind0))); compressed = 0; ind1 = ind0; ind0 = 0; } else { ind0 -= MAXBITS; ind1 = ind0; ++idx; } } } // while (ind... if (ind1 == 0) { // set current and compressed int v = vec.getQuick(idx); if (isAFill(v)) { cnt = (v & MAXCNT) * MAXBITS; current = (isOneFill(v) ? 1 : 0); compressed = 1; } else { cnt = MAXBITS; current = (v >>> SECONDBIT); compressed = 0; } } if (ind0 > 0) // has not found the right location yet. { if (ind0 < active.nbits) { // in the active word ind1 = (1 << (active.nbits - ind0 - 1)); if (val != 0) { active.val |= ind1; } else { active.val &= ~ind1; } } else { // extends the current bit vector ind1 = ind0 - active.nbits - 1; appendWord(HEADER0 | (ind1 / MAXBITS)); for (ind1 %= MAXBITS; ind1 > 0; --ind1) addOneBit(0); addOneBit(val != 0 ? 1 : 0); } if (nset != 0) nset += val != 0 ? 1 : -1; return; } // locate the bit to be changed, lots of work hidden here if (current == val) return; // nothing to do int v = vec.getQuick(idx); // need to actually modify the bit if (compressed == 0) { // toggle a single bit of a literal word v ^= (1 << (SECONDBIT - ind1)); vec.setQuick(idx, v); } else if (ind1 < MAXBITS) { // bit to be modified is in the first word, two pieces --v; vec.set(idx, v); if ((v & MAXCNT) == 1) { v = (current != 0) ? ALLONES : 0; vec.setQuick(idx, v); } int w = 1 << (SECONDBIT - ind1); if (val == 0) w ^= ALLONES; vec.beforeInsert(idx, w); idx++; } else if (cnt - ind1 <= MAXBITS) { // bit to be modified is in the last word, two pieces --(v); vec.setQuick(idx, v); if ((v & MAXCNT) == 1) { v = (current != 0) ? ALLONES : 0; vec.setQuick(idx, v); } int w = 1 << (cnt - ind1 - 1); if (val == 0) w ^= ALLONES; ++idx; vec.beforeInsert(idx, w); } else { // the counter breaks into three pieces int u[] = new int[2], w; u[0] = ind1 / MAXBITS; w = (v & MAXCNT) - u[0] - 1; u[1] = 1 << (SECONDBIT - ind1 + u[0] * MAXBITS); if (val == 0) { u[0] = (u[0] > 1) ? (HEADER1 | u[0]) : (ALLONES); u[1] ^= ALLONES; w = (w > 1) ? (HEADER1 | w) : (ALLONES); } else { u[0] = (u[0] > 1) ? (HEADER0 | u[0]) : 0; w = (w > 1) ? (HEADER0 | w) : 0; } vec.setQuick(idx, w); vec.beforeInsertAllOf(idx, Arrays.asList(u)); } if (nset != 0) nset += val != 0 ? 1 : -1; } else { throw new AssertionError("Untested code detected, would rather die than run this"); } }
/** * Returns the best cut of a graph w.r.t. the degree of dissimilarity between points of different * partitions and the degree of similarity between points of the same partition. * * @param W the weight matrix of the graph * @return an array of two elements, each of these contains the points of a partition */ protected static int[][] bestCut(DoubleMatrix2D W) { int n = W.columns(); // Builds the diagonal matrices D and D^(-1/2) (represented as their diagonals) DoubleMatrix1D d = DoubleFactory1D.dense.make(n); DoubleMatrix1D d_minus_1_2 = DoubleFactory1D.dense.make(n); for (int i = 0; i < n; i++) { double d_i = W.viewRow(i).zSum(); d.set(i, d_i); d_minus_1_2.set(i, 1 / Math.sqrt(d_i)); } DoubleMatrix2D D = DoubleFactory2D.sparse.diagonal(d); // System.out.println("DoubleMatrix2D :\n"+D.toString()); DoubleMatrix2D X = D.copy(); // System.out.println("DoubleMatrix2D copy :\n"+X.toString()); // X = D^(-1/2) * (D - W) * D^(-1/2) X.assign(W, Functions.minus); // System.out.println("DoubleMatrix2D X: (D-W) :\n"+X.toString()); for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) X.set(i, j, X.get(i, j) * d_minus_1_2.get(i) * d_minus_1_2.get(j)); // Computes the eigenvalues and the eigenvectors of X EigenvalueDecomposition e = new EigenvalueDecomposition(X); DoubleMatrix1D lambda = e.getRealEigenvalues(); // Selects the eigenvector z_2 associated with the second smallest eigenvalue // Creates a map that contains the pairs <index, eigenvalue> AbstractIntDoubleMap map = new OpenIntDoubleHashMap(n); for (int i = 0; i < n; i++) map.put(i, Math.abs(lambda.get(i))); IntArrayList list = new IntArrayList(); // Sorts the map on the value map.keysSortedByValue(list); // Gets the index of the second smallest element int i_2 = list.get(1); // y_2 = D^(-1/2) * z_2 DoubleMatrix1D y_2 = e.getV().viewColumn(i_2).copy(); y_2.assign(d_minus_1_2, Functions.mult); // Creates a map that contains the pairs <i, y_2[i]> map.clear(); for (int i = 0; i < n; i++) map.put(i, y_2.get(i)); // Sorts the map on the value map.keysSortedByValue(list); // Search the element in the map previuosly ordered that minimizes the cut // of the partition double best_cut = Double.POSITIVE_INFINITY; int[][] partition = new int[2][]; // The array v contains all the elements of the graph ordered by their // projection on vector y_2 int[] v = list.elements(); // For each admissible splitting point i for (int i = 1; i < n; i++) { // The array a contains all the elements that have a projection on vector // y_2 less or equal to the one of i-th element // The array b contains the remaining elements int[] a = new int[i]; int[] b = new int[n - i]; System.arraycopy(v, 0, a, 0, i); System.arraycopy(v, i, b, 0, n - i); double cut = Ncut(W, a, b, v); if (cut < best_cut) { best_cut = cut; partition[0] = a; partition[1] = b; } } // System.out.println("Partition:"); // UtilsJS.printMatrix(partition); return partition; }