예제 #1
0
 public void decode() {
   int v = vec.get(idx);
   if (WAHBitSet.isAFill(v)) {
     fillWord = (isOneFill(v) ? ALLONES : 0);
     nWords = v & MAXCNT;
     fill = true;
   } else {
     nWords = 1;
     fill = false;
   }
 }
예제 #2
0
    // this function tries to advance the run by nWords
    // sometimes it is not possible, in that case it returns how much it advanced.
    public int inc(int nWords) {
      int orig = nWords;
      nWords--;
      while (nWords > 0) {
        ++idx;
        int v = vec.get(idx);
        if (isAFill(v)) {
          int words = v & MAXCNT;
          if (words > nWords) {
            --idx;
            break;
          }
          nWords -= words;
        } else {
          nWords--;
        }
      }

      return orig - nWords;
    }
예제 #3
0
  private void setBit(int ind, int val) {
    assert val == 0 || val == 1;

    if (ind >= numBits()) {
      int diff = ind - numBits() + 1;
      if (active.nbits > 0) {
        if (ind + 1 >= nbits + MAXBITS) {
          diff -= MAXBITS - active.nbits;
          active.val <<= (MAXBITS - active.nbits);
          if (diff == 0) active.val += (val != 0 ? 1 : 0);
          appendLiteral();
        } else {
          active.nbits += diff;
          active.val <<= diff;
          active.val += (val != 0 ? 1 : 0);
          diff = 0;
        }
      }
      if (diff != 0) {
        int w = diff / MAXBITS;
        diff -= w * MAXBITS;
        if (diff != 0) {
          if (w > 1) {
            appendCounter(0, w);
          } else if (w != 0) {
            appendLiteral();
          }
          active.nbits = diff;
          active.val += (val != 0 ? 1 : 0);
        } else if (val != 0) {
          if (w > 2) {
            appendCounter(0, w - 1);
          } else if (w == 2) {
            appendLiteral();
          }
          active.val = 1;
          appendLiteral();
        } else {
          if (w > 1) {
            appendCounter(0, w);
          } else if (w != 0) {
            appendLiteral();
          }
        }
      }

      if (numBits() != ind + 1) logger.warning("Warning");

      if (nset != 0) nset += (val != 0 ? 1 : 0);

      return;
    } else if (ind >= nbits) { // modify an active bit
      int u = active.val;
      if (val != 0) {
        active.val |= (1 << (active.nbits - (ind - nbits) - 1));
      } else {
        active.val &= ~(1 << (active.nbits - (ind - nbits) - 1));
      }
      if (nset != 0 && (u != active.val)) nset += (val != 0 ? 1 : -1);
      return;
    } else if (vec.size() * MAXBITS == nbits) { // uncompressed
      int i = ind / MAXBITS;
      int u = vec.get(i);
      int w = (1 << (SECONDBIT - (ind % MAXBITS)));

      if (val != 0) vec.setQuick(i, u |= w);
      else vec.setQuick(i, u &= ~w);
      if (nset != 0 && (vec.getQuick(i) != u)) nset += (val != 0 ? 1 : -1);
      return;
    }

    // the code after this has not been verified at all...
    // should proceed with caution.
    // compressed bit vector --
    // the bit to be modified is in vec
    if (RUN_UNTESTED_CODE) {
      int idx = 0;
      int compressed = 0, cnt = 0, ind1 = 0, ind0 = ind;
      int current = 0; // current bit value
      while ((ind0 > 0) && (idx < vec.size())) {
        int v = vec.getQuick(idx);

        if (isAFill(v)) { // a fill
          cnt = ((v) & MAXCNT) * MAXBITS;
          if (cnt > ind0) { // found the location
            current = (isOneFill(v) ? 1 : 0);
            compressed = 1;
            ind1 = ind0;
            ind0 = 0;
          } else {
            ind0 -= cnt;
            ind1 = ind0;
            ++idx;
          }
        } else { // a literal word
          cnt = MAXBITS;
          if (MAXBITS > ind0) { // found the location
            current = (1 & ((v) >>> (SECONDBIT - ind0)));
            compressed = 0;
            ind1 = ind0;
            ind0 = 0;
          } else {
            ind0 -= MAXBITS;
            ind1 = ind0;
            ++idx;
          }
        }
      } // while (ind...

      if (ind1 == 0) { // set current and compressed
        int v = vec.getQuick(idx);
        if (isAFill(v)) {
          cnt = (v & MAXCNT) * MAXBITS;
          current = (isOneFill(v) ? 1 : 0);
          compressed = 1;
        } else {
          cnt = MAXBITS;
          current = (v >>> SECONDBIT);
          compressed = 0;
        }
      }

      if (ind0 > 0) // has not found the right location yet.
      {
        if (ind0 < active.nbits) { // in the active word
          ind1 = (1 << (active.nbits - ind0 - 1));
          if (val != 0) {
            active.val |= ind1;
          } else {
            active.val &= ~ind1;
          }
        } else { // extends the current bit vector
          ind1 = ind0 - active.nbits - 1;
          appendWord(HEADER0 | (ind1 / MAXBITS));
          for (ind1 %= MAXBITS; ind1 > 0; --ind1) addOneBit(0);
          addOneBit(val != 0 ? 1 : 0);
        }
        if (nset != 0) nset += val != 0 ? 1 : -1;
        return;
      }

      // locate the bit to be changed, lots of work hidden here
      if (current == val) return; // nothing to do

      int v = vec.getQuick(idx);
      // need to actually modify the bit
      if (compressed == 0) {
        // toggle a single bit of a literal word
        v ^= (1 << (SECONDBIT - ind1));
        vec.setQuick(idx, v);
      } else if (ind1 < MAXBITS) {
        // bit to be modified is in the first word, two pieces
        --v;
        vec.set(idx, v);
        if ((v & MAXCNT) == 1) {
          v = (current != 0) ? ALLONES : 0;
          vec.setQuick(idx, v);
        }
        int w = 1 << (SECONDBIT - ind1);
        if (val == 0) w ^= ALLONES;

        vec.beforeInsert(idx, w);
        idx++;
      } else if (cnt - ind1 <= MAXBITS) {
        // bit to be modified is in the last word, two pieces
        --(v);
        vec.setQuick(idx, v);
        if ((v & MAXCNT) == 1) {
          v = (current != 0) ? ALLONES : 0;
          vec.setQuick(idx, v);
        }
        int w = 1 << (cnt - ind1 - 1);
        if (val == 0) w ^= ALLONES;
        ++idx;
        vec.beforeInsert(idx, w);
      } else { // the counter breaks into three pieces
        int u[] = new int[2], w;
        u[0] = ind1 / MAXBITS;
        w = (v & MAXCNT) - u[0] - 1;
        u[1] = 1 << (SECONDBIT - ind1 + u[0] * MAXBITS);
        if (val == 0) {
          u[0] = (u[0] > 1) ? (HEADER1 | u[0]) : (ALLONES);
          u[1] ^= ALLONES;
          w = (w > 1) ? (HEADER1 | w) : (ALLONES);
        } else {
          u[0] = (u[0] > 1) ? (HEADER0 | u[0]) : 0;
          w = (w > 1) ? (HEADER0 | w) : 0;
        }
        vec.setQuick(idx, w);
        vec.beforeInsertAllOf(idx, Arrays.asList(u));
      }

      if (nset != 0) nset += val != 0 ? 1 : -1;
    } else {
      throw new AssertionError("Untested code detected, would rather die than run this");
    }
  }
  /**
   * Returns the best cut of a graph w.r.t. the degree of dissimilarity between points of different
   * partitions and the degree of similarity between points of the same partition.
   *
   * @param W the weight matrix of the graph
   * @return an array of two elements, each of these contains the points of a partition
   */
  protected static int[][] bestCut(DoubleMatrix2D W) {
    int n = W.columns();
    // Builds the diagonal matrices D and D^(-1/2) (represented as their diagonals)
    DoubleMatrix1D d = DoubleFactory1D.dense.make(n);
    DoubleMatrix1D d_minus_1_2 = DoubleFactory1D.dense.make(n);
    for (int i = 0; i < n; i++) {
      double d_i = W.viewRow(i).zSum();
      d.set(i, d_i);
      d_minus_1_2.set(i, 1 / Math.sqrt(d_i));
    }
    DoubleMatrix2D D = DoubleFactory2D.sparse.diagonal(d);

    // System.out.println("DoubleMatrix2D :\n"+D.toString());

    DoubleMatrix2D X = D.copy();

    // System.out.println("DoubleMatrix2D copy :\n"+X.toString());

    // X = D^(-1/2) * (D - W) * D^(-1/2)
    X.assign(W, Functions.minus);
    // System.out.println("DoubleMatrix2D X: (D-W) :\n"+X.toString());
    for (int i = 0; i < n; i++)
      for (int j = 0; j < n; j++)
        X.set(i, j, X.get(i, j) * d_minus_1_2.get(i) * d_minus_1_2.get(j));

    // Computes the eigenvalues and the eigenvectors of X
    EigenvalueDecomposition e = new EigenvalueDecomposition(X);
    DoubleMatrix1D lambda = e.getRealEigenvalues();

    // Selects the eigenvector z_2 associated with the second smallest eigenvalue
    // Creates a map that contains the pairs <index, eigenvalue>
    AbstractIntDoubleMap map = new OpenIntDoubleHashMap(n);
    for (int i = 0; i < n; i++) map.put(i, Math.abs(lambda.get(i)));
    IntArrayList list = new IntArrayList();
    // Sorts the map on the value
    map.keysSortedByValue(list);
    // Gets the index of the second smallest element
    int i_2 = list.get(1);

    // y_2 = D^(-1/2) * z_2
    DoubleMatrix1D y_2 = e.getV().viewColumn(i_2).copy();
    y_2.assign(d_minus_1_2, Functions.mult);

    // Creates a map that contains the pairs <i, y_2[i]>
    map.clear();
    for (int i = 0; i < n; i++) map.put(i, y_2.get(i));
    // Sorts the map on the value
    map.keysSortedByValue(list);
    // Search the element in the map previuosly ordered that minimizes the cut
    // of the partition
    double best_cut = Double.POSITIVE_INFINITY;
    int[][] partition = new int[2][];

    // The array v contains all the elements of the graph ordered by their
    // projection on vector y_2
    int[] v = list.elements();
    // For each admissible splitting point i
    for (int i = 1; i < n; i++) {
      // The array a contains all the elements that have a projection on vector
      // y_2 less or equal to the one of i-th element
      // The array b contains the remaining elements
      int[] a = new int[i];
      int[] b = new int[n - i];
      System.arraycopy(v, 0, a, 0, i);
      System.arraycopy(v, i, b, 0, n - i);
      double cut = Ncut(W, a, b, v);
      if (cut < best_cut) {
        best_cut = cut;
        partition[0] = a;
        partition[1] = b;
      }
    }

    // System.out.println("Partition:");
    // UtilsJS.printMatrix(partition);

    return partition;
  }