예제 #1
0
 /**
  * Create a new evolution {@code Engine.Builder} initialized with the values of the current
  * evolution {@code Engine}. With this method, the evolution engine can serve as a template for an
  * new one.
  *
  * @return a new engine builder
  */
 public Builder<G, C> builder() {
   return new Builder<>(_genotypeFactory, _fitnessFunction)
       .alterers(_alterer)
       .clock(_clock)
       .executor(_executor.get())
       .fitnessScaler(_fitnessScaler)
       .maximalPhenotypeAge(_maximalPhenotypeAge)
       .offspringFraction((double) _offspringCount / (double) getPopulationSize())
       .offspringSelector(_offspringSelector)
       .optimize(_optimize)
       .phenotypeValidator(_validator)
       .populationSize(getPopulationSize())
       .survivorsSelector(_survivorsSelector)
       .individualCreationRetries(_individualCreationRetries);
 }
 @Override
 public Integer call() throws Exception {
   int id = _callable.getId();
   LOG.debug(String.format(format, "Submitting", id));
   try {
     Integer result = _executor.timedTask(_callable, _timeout, _unit);
     LOG.debug(String.format(format, "Finished", id));
     recordResult(_results, "success");
     return result;
   } catch (Exception e) {
     LOG.debug(String.format(format, "Exception", id));
     recordResult(_results, e);
     // re-throw caught exception
     throw e;
   } finally {
     _latch.countDown();
   }
 }
예제 #3
0
 /**
  * Return the {@link Executor} the engine is using for executing the evolution steps.
  *
  * @return the executor used for performing the evolution steps
  */
 public Executor getExecutor() {
   return _executor.get();
 }
예제 #4
0
 // Evaluates the fitness function of the give population concurrently.
 private Population<G, C> evaluate(final Population<G, C> population) {
   try (Concurrency c = Concurrency.with(_executor.get())) {
     c.execute(population);
   }
   return population;
 }
예제 #5
0
  /**
   * Perform one evolution step with the given evolution {@code start} object New phenotypes are
   * created with the fitness function and fitness scaler defined by this <em>engine</em>
   *
   * <p><em>This method is thread-safe.</em>
   *
   * @since 3.1
   * @see #evolve(org.jenetics.Population, long)
   * @param start the evolution start object
   * @return the evolution result
   * @throws java.lang.NullPointerException if the given evolution {@code start} is {@code null}
   */
  public EvolutionResult<G, C> evolve(final EvolutionStart<G, C> start) {
    final Timer timer = Timer.of().start();

    final Population<G, C> startPopulation = start.getPopulation();

    // Initial evaluation of the population.
    final Timer evaluateTimer = Timer.of(_clock).start();
    evaluate(startPopulation);
    evaluateTimer.stop();

    // Select the offspring population.
    final CompletableFuture<TimedResult<Population<G, C>>> offspring =
        _executor.async(() -> selectOffspring(startPopulation), _clock);

    // Select the survivor population.
    final CompletableFuture<TimedResult<Population<G, C>>> survivors =
        _executor.async(() -> selectSurvivors(startPopulation), _clock);

    // Altering the offspring population.
    final CompletableFuture<TimedResult<AlterResult<G, C>>> alteredOffspring =
        _executor.thenApply(offspring, p -> alter(p.result, start.getGeneration()), _clock);

    // Filter and replace invalid and to old survivor individuals.
    final CompletableFuture<TimedResult<FilterResult<G, C>>> filteredSurvivors =
        _executor.thenApply(survivors, pop -> filter(pop.result, start.getGeneration()), _clock);

    // Filter and replace invalid and to old offspring individuals.
    final CompletableFuture<TimedResult<FilterResult<G, C>>> filteredOffspring =
        _executor.thenApply(
            alteredOffspring, pop -> filter(pop.result.population, start.getGeneration()), _clock);

    // Combining survivors and offspring to the new population.
    final CompletableFuture<Population<G, C>> population =
        filteredSurvivors.thenCombineAsync(
            filteredOffspring,
            (s, o) -> {
              final Population<G, C> pop = s.result.population;
              pop.addAll(o.result.population);
              return pop;
            },
            _executor.get());

    // Evaluate the fitness-function and wait for result.
    final Population<G, C> pop = population.join();
    final TimedResult<Population<G, C>> result = TimedResult.of(() -> evaluate(pop), _clock).get();

    final EvolutionDurations durations =
        EvolutionDurations.of(
            offspring.join().duration,
            survivors.join().duration,
            alteredOffspring.join().duration,
            filteredOffspring.join().duration,
            filteredSurvivors.join().duration,
            result.duration.plus(evaluateTimer.getTime()),
            timer.stop().getTime());

    final int killCount =
        filteredOffspring.join().result.killCount + filteredSurvivors.join().result.killCount;

    final int invalidCount =
        filteredOffspring.join().result.invalidCount + filteredSurvivors.join().result.invalidCount;

    return EvolutionResult.of(
        _optimize,
        result.result,
        start.getGeneration(),
        durations,
        killCount,
        invalidCount,
        alteredOffspring.join().result.alterCount);
  }